

a software framework for interactive

information visualization

jeffrey michael heer
Computer Science Division

University of California, Berkeley
December, 2004

Submitted to the Department of Electrical
Engineering and Computer Sciences,
University of California at Berkeley, in
partial satisfaction of the requirements for
the degree of Master of Science, Plan II

Approval for the Report and

Comprehensive Examination:

Professor James A. Landay
Research Advisor

Professor Marti Hearst
Second Reader

acknowledgements

this report represents the fruit of months of effort, built atop a foundation years in the making. none of

this would have been possible without the tireless efforts of those who helped lay that foundation.

thanks to the American Society for Engineering Education for financial support of my studies.

thanks to the University of California, Berkeley Computer Science Division, for years of education,

inspiration, and support.

thanks to both my advisor and reader, James Landay and Marti Hearst, for providing support and feedback

while trusting me with the freedom to explore. thanks also to Anind Dey, Jennifer Mankoff, Marc Davis,

and Peter Lyman for their guidance and help navigating the ever-changing landscapes of academia.

thanks to my esteemed graduate colleagues, both past and present: Alan Newberger, Scott Lederer, Scott

Klemmer, Chris Beckmann, Jason Hong, Scott Carter, Tara Matthews, Nathan Good, Ana Ramirez,

Guillermo Diez-Canas, and Tye Rattenbury.

thanks to my intellectual parents at Palo Alto Research Center, formerly Xerox PARC. i would not be where

i am today without the mentorship of Stuart Card, Jock Mackinlay, Peter Pirolli, and the rest of the

Information Sciences and Technology Laboratory. in particular, a very special thanks is due to Ed Chi, who

years ago met one precocious undergrad and showed him how to be a researcher.

thanks to the friends who made it worth doing in the first place: Zohr, Fred, James, Bloke, Cones, Meezil,

Rookie, Danny, Leah, Katrina, Sarah(x2), Corey, Ryan, Nathan, Kevin, Mirko, Amanda, Ken, Adam, Bryan,

Zahra, Curtis, Gazelle, and members of the Berkeley Crew everywhere.

finally, thanks to my family for all their support, love, and encouragement throughout the years.

-jmh

ABSTRACT

Although information visualization (infovis) technologies have proven indispensable

tools for making sense of complex data, wide-spread deployment has yet to take hold, as

successful infovis applications are often difficult to author and require domain-specific

customization. To address these issues, we have created prefuse, a software framework

for creating dynamic visualizations of both structured and unstructured data. prefuse

provides theoretically-motivated abstractions for the design of a wide range of

visualization applications, enabling programmers to string together desired components

quickly to create and customize working visualizations. To evaluate prefuse we have

built both existing and novel visualizations testing the toolkit's flexibility and

performance, and have run usability studies and usage surveys finding that programmers

find the toolkit usable and effective.

Interactive demonstrations, video demonstrations, and open-source software for the

prefuse project are available at http://prefuse.sourceforge.net.

INTRODUCTION

Since the introduction of data graphics in the late 1700’s [46], visual representations of abstract information

have been used to demystify data and reveal otherwise hidden patterns. The recent advent of graphical

interfaces has enabled direct interaction with visualized information, giving rise to over a decade of

information visualization research. Information visualization (or infovis) seeks to augment human cognition

by leveraging human visual capabilities to make sense of abstract information [12], providing means by

which humans with constant perceptual abilities can grapple with increasing hordes of data.

Still, as inexpensive processing and graphics capabilities continue to improve, there remains a dearth of

information visualization applications on current systems. While some of the reasons are economic [20],

there are technical roadblocks as well. One is that information visualization applications are difficult to

build, requiring mathematical and programming skills to implement complex layout algorithms and

dynamic graphics. Another reason is that infovis applications do not lend themselves to “one size fits all”

solutions; while successful visualizations often reuse established techniques, they are also uniquely tailored

to their application domain (e.g., [31]), requiring customization. This suggests a toolkit approach,

supporting a diversity of customized applications by providing high-level support for common, reusable

visualization solutions. While infovis toolkits attempting to fill this gap have begun to emerge, current

offerings [9,17] provide libraries of pre-built visualizations rather than a set of reusable components for

building customized or novel visualization designs.

To address these concerns and better support the design and implementation of novel visualizations, we

have built prefuse1, an extensible user interface toolkit for crafting interactive visualizations. Instead of

providing only ready-made infovis “widgets” that can be applied much like buttons or checkboxes in

traditional GUI tools, prefuse provides a set of finer-grained building blocks for constructing tailored

visualizations. This approach simplifies the composition of established methods, such as layout or

distortion algorithms, while providing an integrated structure in which to develop novel techniques and

domain-specific designs. The formalism of a graph — a set of entities and relations between them — is used

1 In line with the musical naming conventions of Java user interface toolkits, the prefuse (pronounced "pref-use")
name derives from Prefuse 73, an electronic musician whose work fueled my own. prefuse is intentionally spelled in
the lower-case.

as the toolkit’s fundamental data structure, enabling a broad class of visualizations comprising node-link

diagrams, containment diagrams, and visualizations of unstructured (edge-free) data such as scatter plots

and timelines (Figure 1 contains a sample visualization). prefuse includes a library of layout algorithms,

navigation and interaction techniques, integrated search, and more. prefuse is written in the Java

programming language using the Java2D graphics library.

Informed by a review of existing applications, our own years of experience designing novel visualizations,

and earlier toolkit evaluations, the prefuse toolkit offers:

Figure 1. Consecutive snapshots of a prefuse-built graph viewer featuring automatic zooming.

• Data structures and I/O libraries for unstructured, graph, and tree data

• Multiple visualizations of a single data source

• Multiple views of a single visualization

• Scalability to thousands of on-screen items, and to backing data sources with millions of elements

• Batch processing of data using composable actions

• A library of provided layout and distortion techniques

• Animation and time-based processing

• Graphics transforms, including panning and zooming

• A physical force simulator for layout and interaction

• Interactor components for common interactions

• Integrated color maps and search functionality

• Event logging to support visualization evaluation

To provide a principled toolkit flexible enough to support novel visualizations while providing ample

coverage of the visualization design space, we based the design of prefuse on an existing theoretical

framework for infovis, the “data state” or infovis reference model [11,12,15]. This model decomposes

design into a process of representing abstract data, mapping data into an intermediate, visualizable form,

and then using these visual analogues to provide interactive displays (Figure 2). Prior work has validated

the model’s expressiveness, providing a comprehensive taxonomy of visualization techniques [15].

In particular, prefuse introduces abstractions for filtering source data into visualizable content, providing both

scalability and representational flexibility, and using composable actions to perform batch processing of this

content, for example data transformation, layout, or color assignment. Programmers craft visualizations by

stringing together actions into executable chains that can then be run to manipulate visual data and perform

animation. Interactive views are then created from this visual data through a highly-configurable rendering

system, to which pre-built controls can be added to specify interactive behaviors. This separation of concerns

provides a degree of flexibility unmatched by existing infovis toolkits [9,17], supporting multiple views,

semantic zooming, data and visual transformations, and application extension and customization. prefuse

further demonstrates that these generalized abstractions can be provided without unduly sacrificing

performance.

In the next section we survey related work, motivating the need for our toolkit. Next, we describe the

design of prefuse and walk through an example prefuse-built visualization. We then present evaluations of

the toolkit, including applications showcasing the toolkit’s power and flexibility, and a qualitative study

demonstrating the usability of prefuse’s application programming interface (API).

MOTIVATION AND RELATED WORK

The goal of prefuse is to simplify the creation of visualizations akin to how GUI toolkits have facilitated

the design of traditional WIMP (Windows-Icons-Menus-Pointing) user interfaces. As such, prefuse draws

from pioneering work on input abstractions like the model-view-controller [29] and interactor [36]

paradigms, and the rich history and lessons learned from toolkit development [37]. This includes early

systems for graph layout and editing [23,26] and for including animation in user interface toolkits [24].

While cutting-edge 2D user interface toolkits such as Piccolo [7] and its predecessor Jazz [8] provide

facilities useful for information visualization such as zooming and animation support, they are not focused

on supporting common visualization techniques directly. Our goal is to construct a framework of higher-

level abstractions for presentation, navigation, and batch processing of interactive objects that simplifies

visualization creation while affording the freedom to explore new designs.

The past 15 years have witnessed a rich body of information visualization work, featuring the creation of

novel visualization designs for both structured and unstructured data. Examples include TreeMaps [10,44],

Cone Trees [42], Perspective Walls [34], StarField displays [1], Hyperbolic trees [30], DOITrees [13,22],

SpaceTrees [39], and more. Advances also came in the form of selection, transformation and navigation

techniques, including focus+context schemes [18], space distortion [32], point-of-interest navigation [33],

and panning and zooming [25,38]. Perhaps the first integrated framework for infovis was the Information

Visualizer [14], featuring many of the aforementioned techniques as well as a centralized “governor” to

oversee animation and ensure smooth interactive frame rates.

Concurrently, the graph drawing community has devised algorithms for the aesthetic layout of graph

structures. These are given thorough coverage by di Battista et al. in [4]. Perhaps the best known software

for graph drawing is the excellent graphviz package from AT&T [19]. There are several other research and

commercial graph drawing systems, including Marshall et al.’s Graph Visualization Framework (GVF)

[35], the University of Ljubljana’s Pajek [3], and products from Tom Sawyer and yWorks. These

applications produce largely static visualizations and do not constitute programming platforms for highly-

interactive visualizations. However, in recent years the graph drawing community has begun moving

towards increasingly interactive solutions, signaling a possible convergence with the information

visualization community.

While most information visualization research to date has consisted of exploring the space of successful

designs and techniques, the field is now moving into a second phase in which this accumulated knowledge

is applied in a principled manner. For example, Polaris [45] applies infovis techniques to provide a

powerful system for visualizing relational databases. ILOG Discovery [5] allows for the declarative

construction of data-linear visualizations such as plots, bar graphs, histograms, and containment diagrams,

but does not handle graph layout or interactive animation.

The projects most similar in spirit to prefuse are infovis-specific toolkits such as Fekete's InfoVis toolkit [17]

and Indiana's XML toolkit [9]. Both provide unified data models utilized by visualization “widgets” that

encapsulate layout, rendering, and interaction in monolithic units. With these toolkits, programmers can select

from multiple existing visualizations such as TreeMaps or scatterplots and apply them in a straightforward

manner.

Though these toolkits come a long way in making infovis techniques accessible, a finer-grained structure

supporting deep customization and flexible composition of visualization methods—and thereby supporting

novel approaches—is lacking. Within these existing toolkits modularity occurs primarily at the level of entire

interactive visualizations rather than composable techniques, and generalized rendering and animation

handling are lacking. Creating a new visualization requires either starting from scratch or subclassing a pre-

existing visualization; one can not simply select and combine diverse techniques, nor craft visualization

components that leverage techniques dynamically, such as orchestrating changes in item appearance (e.g.,

semantic zooming) or providing various views and animated transitions within a single component (e.g.,

switching between scatterplot and graph views of data). Introducing new functionality into existing

visualizations without recoding can also prove difficult, as there is little decomposition of visualizations into

reconfigurable parts. By abstracting visualization techniques, rendering, and interaction into composable,

reusable units, we believe the state of the art can be advanced.

To meet this goal, we based the design of prefuse on existing theoretical models of information visualization.

The information visualization reference model (or data state model) [11,12,15] serves as a conceptual

framework for structuring infovis applications. The model decomposes design into a process of representing

abstract data, mapping data into an intermediate, visualizable form, processing these visual analogues, and

then mapping them into interactive displays (Figure 2). This model provides a sound base for characterizing a

vast majority of infovis work (including the previous examples), providing a comprehensive taxonomy of

visualization techniques [15]. Furthermore, Chi has shown that the model is functionally equivalent to the

time-tested data flow model [16] used by 3D toolkits such as VTK [28]. We believe this makes the model a fit

candidate as the basis for future, novel realizations. As discussed in successive sections, prefuse contributes a

general implementation of this model to support a wide range of visualization designs.

DESIGN OF THE PREFUSE TOOLKIT

We now describe the toolkit design (illustrated in Figure 2), presenting the architecture, basic abstractions,

and provided libraries for processing and visualizing information.

Abstract Data

The prefuse visualization process starts with abstract data to visualize, represented in some canonical form.

prefuse provides interfaces and default implementations of data structures for unstructured, graph, and tree

data. The basic data element type, an Entity, supports any number of named attributes (name-value pairs)

and provides the base class from which structural types such as Node, TreeNode, and Edge descend.

prefuse provides extensible interfaces for input and output of this data (e.g., from XML data files), and

includes (currently read-only) support for incremental loading and caching from a database or other

external store, supporting bounded visualizations of data collections too large to fit in memory.

Filtering

Filtering is the process of mapping abstract data to a representation suitable for visualization. First a set of

abstract data elements are selected for visualization, such as a focal region of a graph [18] or a bounded

range of values to show in a scatter plot. Next, corresponding visual analogues (called VisualItems) are

generated, which, in addition to the attributes of the source data, record visual properties such as location,

color, and size. These filtered VisualItems also maintain their own version of the data topology. Though in

Figure 2. The prefuse visualization framework. Lists of composable actions filter abstract data into
visualizable content and assign visual properties (position, color, size, font, etc). Renderer modules, provided
on a per-item basis by a RendererFactory, draw the VisualItems to construct interactive Displays. User
interaction can then trigger changes at any point in the framework.

many cases this may simply be a mirror of a subset of the abstract data’s structure, this representational

flexibility allows any number of transformations of the original topology. One example, demonstrated later

in the Applications section, is to remove intermediate levels of a tree based on inferred user interest in the

data items. Individual filters are provided in prefuse as Action modules, discussed later in this section.

In the data state model of [15], filtering constitutes the Visualization Transformation: reducing abstract data

to visualizable content. Filtering can also be understood as implementing a tiered version of the model-

view-controller pattern [29]. Abstract data provides a base model for any number of visualizations, while

filtered data constitutes a visualization-specific model with its own set of view-controllers. This enables

multiple visualizations of a shared data set by using separate filters, and different views of a specific

visualization by reusing the same filtered items.

Managing Visual Items: The Item Registry

prefuse provides three types of VisualItem by default: NodeItems to visualize individual entities, EdgeItems

to visualize relations between entities, and AggregateItems to visualize aggregated groups of entities. As

mentioned above, these items are arranged in a graph structure separate from the source data, maintaining a

local version of the data topology and thereby enabling flexible representations of visualized content. This

type system is extensible; if needed, additional VisualItem types can be introduced.

VisualItems are created and stored in a centralized data structure called the ItemRegistry, which houses all

the state for a specific visualization. Filter Actions request visual analogues from the registry, which returns

the VisualItems, creating them as needed, and records the mapping between the abstract data and visualized

content. Each VisualItem type is stored in a sorted queue, with an assignable Java Comparator instance

overseeing the order of items both within and across queues. This sorting determines the rendering order of

the items. Hashtables for each item type maintain the mapping between source Entity instances and

VisualItems, while each individual VisualItem maintains a reference to the source Entity (or in the case of

AggregateItems, to the collection of Entity instances) represented. The ItemRegistry also contains a

FocusManager, overseeing FocusSets of items such as the current focus of interaction, collections of

selected items, and search results.

To support scalability, the ItemRegistry manages VisualItems using a caching approach, tracking item usage

and performing garbage collection when previously visible items are no longer being filtered. This supports

the constrained browsing of large data structures — including focus+context schemes such as generalized

fisheye views [18] — by keeping only a working set of visualized items in the registry. Each VisualItem

instance contains a counter. This counter is reset to zero if the item is requested by the filter, otherwise the

counter is incremented. Once the counter reaches a threshold value (by default set to 1), the item will be

removed from the registry.

When removed from the registry, a VisualItem is removed from the queue for its item class and any

mappings between source data and the item are deleted. To ensure performance, the ItemRegistry recycles

item instances when they are removed from the registry, clearing the state of the item and placing it in an

object pool. When new VisualItems are requested, the ItemRegistry first checks this pool and reuses and

reinitializes an existing instance if available. This pooling avoids memory allocation and object

initialization costs that can cripple performance.

Actions

The basic components of application design in prefuse are Actions: composable processing modules that

update the VisualItems in an ItemRegistry. Actions are the mechanism for selecting visualized data and

setting visual properties, performing tasks such as filtering, layout, color assignment, and interpolation. To

facilitate extensibility, Actions follow a simple API: a single run method that takes an ItemRegistry and an

optional fraction indicating animation progress as input. In addition, base classes for specific Action types

such as filters and layout algorithms are provided. While Actions can perform arbitrary processing tasks,

most fall into one of three types: filter, assignment, and animator actions.

Filter actions perform the filtering process discussed earlier, controlling what entities and relations are

represented by VisualItems in the ItemRegistry. prefuse comes with filters for visualizing structures in their

entirety, and for visualizing data subsets determined using degree-of-interest estimates [18,22]. By default,

filters also initiate garbage collection of stale items in the registry, hiding these details from toolkit users.

Advanced users can optionally disable default garbage collection and apply dedicated GarbageCollector

actions.

Assignment actions set visual attributes, such as location, color, font, and size, for VisualItems. prefuse

includes extensible color, font, and size assignment functions and a host of layout techniques for

positioning items.

Animator actions interpolate visual attributes between starting and ending values to achieve animation,

using the animation fraction provided by the Action interface. prefuse includes animators for locations,

colors, fonts, and sizes.

Finally, prefuse also includes an ActionSwitch, which chooses and runs a single Action from a collection.

This provides a means for providing dynamic action invocation, for example by choosing from a selection

of various filters in response to user actions.

ActionLists and Activities

To perform data processing, Actions are composed into runnable ActionLists that sequentially execute

contained Actions. These lists form processing pipelines that are invoked in response to user or system

events. ActionLists are Actions themselves, allowing nested lists to be used as sub-routines within other lists.

ActionLists can be configured to run once, or to run periodically for a specified duration.

Consider the following example, in which an ActionList containing a force-directed layout and color

function is applied to create an animated visualization that updates every 20ms. The ActionList parameters

are the ItemRegistry to update, the duration over which to run (-1 being an infinite duration), and the rate at

which to re-run the list.

ActionList forces = new ActionList(registry,-1,20);

forces.add(new ForceDirectedLayout());

forces.add(new ColorFunction());

forces.add(new RepaintAction());

forces.runNow(); // schedule the list to start now

The execution of ActionLists is managed by a general activity scheduler, implemented using the approach of

[24]. The scheduler accepts Activity objects (a superclass of ActionList), parameterized by start time,

duration, and step rate, and runs them accordingly. The scheduler runs in a dedicated thread and oversees

all active prefuse visualizations, ensuring atomicity and helping avoid concurrency issues. A listener

interface enables other objects to monitor activity progress, providing callbacks when activities are started,

stepped, finished, or canceled. Time-based processing is controlled by uniformly moving an animation

fraction, a value between 0 and 1, over the requested time span of the activity. Pacing functions [24], which

map the animation fraction to a new value (which must still remain between 0 and 1), can be applied to

parameterize animation rates. This allows for effects such as slow-in slow-out animation (by mapping the

animation fraction through a sigmoid-shaped function) and there-and-back animation (by moving from 0 to

1 over the first half of the activity duration, then moving from 1 back to 0).

Rendering and Display

VisualItems are drawn to the screen by Renderers, components that use the visual attributes of items (e.g.,

location, color) to determine their actual on-screen appearance. Renderers have a simple API consisting of

three methods: one to draw an item, one to return a bounding box for an item, and one to indicate if a given

point is contained within an item. prefuse includes Renderers for drawing basic shapes, straight and curved

edges, text, and images (including image loading, scaling, and caching support). Custom rendering can be

achieved by extending existing Renderers, or by implementing the Renderer interface.

Mappings between items and appearances are managed by a RendererFactory: given a VisualItem, the

RendererFactory returns an appropriate Renderer. This layer of indirection affords a high level of

flexibility, allowing many simple Renderers to be written and then doled out as needed. It also allows

visual appearances to be easily changed on the fly, either by issuing different Renderers in response to data

attributes, or by changing the RendererFactory for a given ItemRegistry. This also provides a clean

mechanism for semantic zooming [38] – the RendererFactory can select Renderers appropriate for the

current scale value of a given Display.

Presentation of visualized data is performed by a Display component, which acts as a camera onto the

contents of an ItemRegistry. The Display subclasses Swing’s top-level JComponent, and can be used in any

Java Swing application. The Display takes an ordered enumeration of visible items from the registry,

applies view transformations, computes the clipping region, and draws all visible items using appropriate

Renderers. The Java2D library is used to support affine transformations of the view, including panning and

zooming. In addition, an ItemRegistry can be tied to multiple Displays, enabling multiple views (e.g.,

overview+detail [12]).

Displays support interaction with visualized items through a ControlListener interface, providing callbacks

in response to mouse and keyboard events on items. Displays also provide direct manipulation text-editing

of item content and allow arbitrary Swing components to be used as interactive tooltips.

The prefuse Library

The core prefuse architecture described above is leveraged by a library of components for application

building. These components simplify application design by providing advanced functions frequently used

in visualizations.

Layout and Distortion. prefuse is bundled with a library of Action modules, including a host of layout and

distortion techniques. Available layouts include random, circular, force-directed, top-down (Reingold-

Tilford) [40], radial [49], indented outline, and tree map [10,44] algorithms. These layouts are

parameterized and reusable, hence one can write new layouts by composing existing modules. In addition,

prefuse supports space distortion of item location and size attributes, including graphical fisheye views [43]

and bifocal distortion [32].

Force Simulation. prefuse includes an extensible and configurable library for force-based physics

simulations. This consists of a set of force functions, including n-body forces (e.g., gravity), spring forces,

and drag forces. To support real-time interaction, n-body force calculations use the Barnes-Hut algorithm

[2], which builds a quad-tree of items to compute the otherwise quadratic calculation in log-linear time.

The force simulation supports various numerical integration schemes, with trade-offs in efficiency and

accuracy, to update velocity and position values. The provided modules abstract the mathematical details of

these techniques (e.g., 4th Order Runge-Kutta [48]) from toolkit users. Users can also write custom force

functions and add them to the simulator.

Interactive Controls. Inspired by the Interactor paradigm [36], prefuse includes parameterizable

ControlListener instances for common interactions. Provided controls include drag controls for

repositioning items (or groups of items), focus controls for updating focus and highlight settings in

response to mouse actions, and navigation controls for panning and zooming, including both manual

controls and speed-dependent automatic zooming [25].

Color Maps. To aid visualization, prefuse includes color maps for assigning colors to data elements. These

maps can be configured directly, built using provided color schemes (e.g., grayscale and color gradients,

hue sampling), or automatically generated by analyzing attribute values.

Integrated Search. To simplify the addition of search to prefuse visualizations, the toolkit includes a

FocusSet implementation to support efficient keyword search of large data sets. This component builds a

trie (prefix tree) of requested data attributes, enabling searches that run in time proportional to the size of

the query string. Search results matching a given query are then available for visualization as a FocusSet in

the ItemRegistry’s FocusManager.

Event Logging. prefuse includes an event logger for monitoring and recording events. This includes both

user interface events (mouse movement, focus selection) and internal system events (addition and deletion

of items from the registry). Although useful for debugging and performance monitoring, the primary

motivation for this feature is to assist user studies, providing a unified framework for evaluating

visualizations. Recorded logs can be used to review or replay a session. We have even synchronized the

event logger with the output of an eye-tracker, enabling us to playback sessions annotated with subjects’

fixation points.

These components, coupled with the underlying capabilities of the prefuse architecture, provide an

expressive platform for crafting a range of highly-interactive visualization applications. The next sections

provide a sample of this range by presenting various prefuse -built visualizations and illustrate how the

architecture facilitates development while providing scalable and responsive visualization performance.

WRITING APPLICATIONS WITH PREFUSE

In this section we demonstrate how prefuse can be used to craft and extend an interactive visualization by

chaining together components, creating extensible applications while minimizing the need for tedious coding

or mathematics.

Code Sample 1 presen

using animated radial

XML file and creates a

node and edge items a

appropriate items.

Two ActionLists are us

applies a radial tree lay
// create graph and registry
Graph g = new XMLGraphReader().loadGraph(datafile);
ItemRegistry registry = new ItemRegistry(g);

// intialize renderers
Renderer nodeR = new TextItemRenderer();
Renderer edgeR = new DefaultEdgeRenderer();
registry.setRendererFactory(
 new DefaultRendererFactory(nodeR, edgeR));

// initialize action lists
ActionList layout = new ActionList(registry);
layout.add(new TreeFilter(true));
layout.add(new RadialTreeLayout());
layout.add(new ColorFunction());

ActionList animate = new ActionList(registry,1500);
animate.setPacingFunction(new SlowInSlowOutPacer());
animate.add(new PolarLocationAnimator());
animate.add(new ColorAnimator());
animate.add(new RepaintAction());
animate.alwaysRunAfter(layout);

// initialize display
Display disp = new Display(registry);
disp.setSize(500,500);
disp.addControlListener(new DragControl());
disp.addControlListener(new FocusControl(layout));

// initialize enclosing window frame
JFrame frame = new JFrame("prefuse example");
frame.getContentPane().add(disp);
frame.pack(); frame.setVisible(true);

layout.runNow();
Code Sample 1: Radial Graph Explorer

ts 24 lines of code comprising a complete prefuse application for exploring graphs

layout (as in Figure 3 and [49]). The application first loads a graph data set from an

 new ItemRegistry to house a visualization of that data. Next, individual Renderers for

re created and a default RendererFactory is created to assign these renderers to the

ed to specify the visualization. The first filters the graph data into a tree structure,

out, and then assigns colors to the nodes. The argument to the TreeFilter specifies that

the current focus node should be used as the root of the filtered tree. The default ColorFunction used provides

custom colors for focused or highlighted items. The second ActionList specifies an animated transition for

when the focus of the visualization changes. It is parameterized to run for 1.5 seconds, interpolating node

positions in polar coordinates and interpolating color values. This list is set to run whenever the previous

layout ActionList completes.

A Display is then created to present the visualization. Two interactive controls are added: a DragControl

enabling users to reposition nodes, and a FocusControl enabling users to select a new focus by clicking on a

node, initiating a recalculation of the layout and an animated transition. Finally, the Display is added to an

enclosing frame, and the layout ActionList is run.

The prefuse architecture supports the addition of customizations and extensions by introducing new Actions,

Renderers, or Controls. For example, if the underlying data set consists of a very large graph, the TreeFilter

can be replaced with a WindowedTreeFilter to limit the visualization to a specified degree of separation (e.g., 3

hops out from the focus). Code Samples 2 through 4 further exemplify the space of possible customizations.

Code Sample 2 illustr

layout by adding jitter

transition completes.

ForceSimulator fsim = new ForceSimulator();
fsim.addForce(new NBodyForce(-0.1f, 15f, 0.9f));
fsim.addForce(new DragForce());

ActionList forces = new ActionList(registry, 1000);
forces.add(new ForceDirectedLayout(fsim, true));
forces.add(new RepaintAction());
forces.alwaysRunAfter(animate);
Code Sample 2: Adding Force-Based “Jitter”

ates how to use a force simulator to cause nodes to repel each other, enhancing the

 to improve readability. The force simulation animates for 1 second after the layout

Code Sample 3 shows

panning and zooming.

dragging, zooming is p

Finally, Code Sample

An ActionList containin

monitors mouse movem
Display overview = new Display(registry);
overview.setBorder(
 BorderFactory.createLineBorder(Color.BLACK, 1));
overview.setSize(50,50);
overview.zoom(new Point2D.Float(0,0),0.1);
display.add(overview);
display.addControlListener(new PanControl());
display.addControlListener(new ZoomControl());
Code Sample 3: Adding an Overview, Panning, and Zooming

 how to add an overview display to the visualization (e.g., see Figure 4) and enable

Panning is performed by holding down the left mouse button on the background and

erformed similarly using the right mouse button.

Distortion feye = new FisheyeDistortion();
ActionList distort = new ActionList(registry);
distort.add(feye);
distort.add(new RepaintAction());

AnchorUpdateControl auc =
 new AnchorUpdateControl(feye,distort);
display.addMouseListener(auc);
display.addMouseMotionListener(auc);
Code Sample 4: Adding Fisheye Distortion

4 demonstrates the addition of fisheye distortion to the visualization (e.g., Figure 6a).

g a Distortion action is created and invoked by an AnchorUpdateControl control that

ent to move the focus (or “anchor”) of the distortion.

EVALUATION – APPLICATION COVERAGE

Throughout the development of the toolkit, we both reimplemented well-known visualizations and crafted

novel designs to the test the expressiveness, effectiveness, and scalability of the toolkit. In this section we

describe our experiences using prefuse to build this array of applications.

Existing Visualizations

Figure 3. Animated radial layout of terrorist connections.

Animated Radial Graphs. The first prefuse application was a re-implementation of Yee et al.’s system for

animated exploration of graphs using radial layout [49], shown visualizing a network of terrorists involved

in the 9/11 attacks in Figure 3. Clicking a node in the visualization initiates an animated transition in which

that node becomes the new center of the diagram. To avoid “clumping” during animation, nodes follow

arced trajectories.

The application consists of 190 lines of code2 and was built using three ActionLists. The first filters the

graph data and computes a radial layout. The second animates between configurations in response to a

focus change, updating colors and interpolating positions in polar coordinates. A third list updates color

values, highlighting neighboring nodes in response to mouse-over events. As radial layout can suffer from

occlusion when too many items are present, we added jitter by introducing an ActionList that briefly runs a

force simulation using anti-gravity. Using prefuse’s library components, it took 12 lines of code and 5

minutes of development time to add this novel customization.

Figure 4. Zoomable force-directed layout of an online social network, including an overview display.

Force-Directed Layout. Force-based techniques are often used for graph layout, for example by creating a

simulation in which nodes exert anti-gravity, edges act as springs, and friction or drag forces ensure that

items settle. A well-known visualization utilizing these techniques is the Visual Thesaurus from

plumbdesign [47]. We have built a similar application in prefuse, shown in Figure 4. The application

consists of a single ActionList, parameterized to re-run every 20ms. The list consists of a filter, a force

directed layout action, and a color function. In 3 lines of code we added controls for dragging nodes,

panning, and zooming. With 5 more lines, we also added an overview display, bringing the total to 164

lines.

2 All code line counts include import statements, which in some cases account for over one-third of the
lines.

Figure 5. Data Mountain of a book and movie collection.

Data Mountain. We also used the force simulator in a re-implementation of the Data Mountain [41], which

we used to visualize a collection of books and movies (shown in Figure 5). Images are automatically

retrieved from the web by prefuse’s image renderer and scaled according to an item’s size value, which is

assigned proportionally to an item’s y-coordinate by a custom SizeFunction. Dragging a thumbnail moves it

around the space, simultaneously initiating an ActionList containing a force-based layout and the

aforementioned size function. Anti-gravity pushes nearby documents out of the way, while invisible springs

anchor items near their original locations. The application was written in under 2 hours and consists of 211

lines of code.

Figure 6a. Space Distortion demo. 6b. A Fisheye Menu.

Fisheye Graphs and Menus. Figure 6a depicts a graph visualization using space distortion to present a

focus+context view of a graph. Moving the mouse pointer causes the focus of the distortion to change

accordingly. This was implemented using a run-once ActionList to filter the graph and compute the layout,

and a second list containing a fisheye distortion action, run in response to a provided update control. The

demo has 142 lines of code and was built in about an hour. Using a similar design, we also built a working

prototype of fisheye menus [6], shown in Figure 6b. Using prefuse, we were able to build the prototype in

just 20 minutes with 86 lines of code, the bulk of which consists of a simple layout that computes the item

locations and scaling factor for the initial, undistorted view.

Figure 7. TreeMap of a nearly 8,000 node ontology. The callout shows a zoomed-in portion of the map.

TreeMaps. As an example of containment diagrams, we built a TreeMap browser using prefuse, shown

visualizing an 8,000 node hierarchy in Figure 7. Each box represents a node in the tree and contains its

descendants in nested boxes. The visualization is backed by a single ActionList containing a TreeFilter, a

custom SizeFunction to assign node areas, a “squarified” tree map layout [10], and a ColorFunction that

uses a color map to assign node color according to depth in the tree. The application was built in under a

day, with most of the effort spent writing and testing the TreeMap layout for the prefuse library. The actual

application consists of 133 lines of code.

Figure 8. SpotPlot scatter plot. Range sliders control the scale and view of visualized data.

Starfield Displays. SpotPlot is a scatter plot viewer built by a colleague with whom we shared our toolkit.

As shown in Figure 8, SpotPlot uses range sliders to control a filtered view of data—both the scatter plot

display and the axis values update in response to the slider-specified ranges. SpotPlot uses a single

ActionList with a custom filter, which uses the current range slider values to filter data elements, and a

layout action that places items according to their (x,y) data values. A custom Renderer draws different

shapes in response to node attributes. The app also uses a customized Display component, overriding the

postPaint method from the Display class to draw the scatter plot axes. The application consists of 523 lines

of code in 7 source files, written in under a week of part-time work.

Figure 9. Hyperbolic Tree Browser.

Hyperbolic Tree. We also used prefuse to re-implement the popular hyperbolic tree browser [30], shown in

Figure 9. Implementing the hyperbolic tree required writing a handful of new Action modules. The first was

a hyperbolic layout routine that computes the coordinates of each data item in the complex plane, storing

the coordinates as attributes of the visual items. Another Action was written to map these complex

coordinates to actual screen locations, completing the layout. To add interactivity, a hyperbolic translation

Action was added to compute coordinate translations in hyperbolic space, projecting the results back onto

the complex plane. The translation module is run in response to individual mouse drags, but also doubles as

an animator, interpolating between two positions in response to clicked items. Finally, we also introduced

an Action to toggle the visibility of peripheral items, improving frame rates. In all, we wrote 631 lines of

code in under three days, 372 in new Action modules and 259 in application code.

Novel Visualizations

Figure 10. Degree-of-Interest Tree visualizing a 600,000 node web directory.

Degree-of-Interest Trees. We have used prefuse to create a novel hierarchy browser [22], an evolutionary

step from Card and Nation’s original Degree-of-Interest Tree (DOITree) browser [13]. DOITrees are tree

visualizations featuring multiple focus+context techniques, including the use of degree-of-interest (DOI)

functions [18] to determine which regions of the tree are visible, and the use of aggregates to represent

unexpanded subtrees and to group lower-interest siblings in the face of limited space resources. Figure 10

shows a prefuse-built DOITree visualizing a web directory with over 600,000 nodes. Clicking a node in the

visualization causes it to become a focus, initiating a recalculation of DOI values and layout followed by an

animated transition. The visualization also supports multiple foci, selected through both manual selection

and keyword search.

We implemented DOITrees using four ActionLists, all of which are sequentially scheduled in response to

changes of focus node. The first list performs filtering, computes layout, and assigns initial colors. The

second ActionList interpolates positions and colors to provide animated transitions. The third and fourth

lists assign and then animate highlighting changes designed to make newly visible nodes easier to track.

Additionally, an ActionSwitch (similar to a multiplexer) is used in the first list to select from one of three

filters: a standard fisheye calculation, a custom filter showing only focus nodes (e.g., search results) and

their ancestors, and another filter showing only focus nodes and their least common ancestors. Each filter

provides progressively more semantically “zoomed-out” views of the data, facilitating exploration of

different foci that may be quite far apart in the tree [22].

The DOITree browser consists of 1929 lines of code, 1011 in reusable Action modules and 918 in

application code. As we developed the app over a period of two months, the toolkit enabled us to add

animated behaviors (initial highlighting and fade-out for tracking newly visible items), design and

incorporate a new layout algorithm [22], provide integrated handling of search results, and customize item

appearances to specific application domains by crafting custom renderers. This application also

demonstrates the toolkit’s scalability, maintaining real-time interaction with data sets containing nearly a

million items.

Vizster. Vizster [21] is a prefuse-built visualization of online social network services such as Friendster and

Orkut (see Figure 11). It provides an ego-centric view of a person’s social network, presented using a force-

directed layout. We are currently using Vizster to visualize a 1.5 million person crawl of the popular

Friendster service. Each node displays a person’s name and image. Clicking a node causes the membership

F

igure 11. Vizster in browsing mode, showing an ego-centric network of friendship relations. The panel
on the right displays profile data for a selected person.

profile, containing information such as interests and relationship status, to appear in the panel on the right.

Double-clicking a node makes the corresponding person the new center of the ego-centric network. The

persons’ friends are loaded from a backing database and displayed while the display automatically pans to

center on the new focus. Manual panning and zooming are also supported; semantic zooming is used to

switch to higher resolution images of people when zoomed in. Typing into the search box immediately

causes both matching people in the graph display and matching text in the profile display to highlight.

In addition to the browsing mode described above, Vizster supports a comparison mode (see Figure 12),

accessed by clicking the radio button next to the desired attribute in the profile panel. In response, node

appearances simplify to using color to display the desired attribute of the data, such as age, gender, or

relationship status. Alternative color maps can be used by selecting them from the application menu.

Underlying Vizster is a rather straightforward application of prefuse’s built-in components, such as fisheye

graph filtering, force-directed layout, image loading and rendering, panning, zooming, integrated search,

Figure 11. Vizster in comparison mode, using color to display the genders of visualized friends.

and color maps. The application uses one primary ActionList, infinitely re-running the force simulation

while also setting the node color values. An ActionSwitch is used to select the appropriate ColorFunction

based on the state of the application. Furthermore, a custom RenderingFactory is used, overseeing semantic

zooming and doling out image renders in browsing mode and text-only renderers in comparison mode.

While the application consists of a total of 1541 lines of code, only 469 lines, or less than one-third, deal

with specifying the visualization. The majority of the code deals with constructing traditional user interface

components such as a login dialog and the profile panel. Using prefuse, we were able to construct the entire

application in under a week.

Summary

The applications above showcase prefuse’s support for component reuse and extensibility, using provided

modules (e.g., filters, layouts, renderers, interactors) across visualizations, while making it easy for both

ourselves and others to introduce customized components. We also found that prefuse's highly-

customizable rendering and animation support greatly accelerated implementation times and the

exploration of various design ideas. Finally, the applications demonstrate that toolkit support did not

unduly sacrifice performance, as applications maintained real-time interaction and animation rates with

thousands of on-screen items and over a million data elements.

EVALUATION – QUALITATIVE USABILITY STUDY

While confident in the toolkit’s expressiveness, we wanted to better understand the learnability and

usability of prefuse’s application programming interface (API) for other programmers. In particular,

abstractions such as filtering and action lists might seem foreign to some programmers, constituting the

threshold for toolkit use [37]. To investigate these concerns, we adopted the evaluation method of [28] and

conducted a user study of the prefuse API, observing 8 programmers using the toolkit to build applications

and then interviewing them about their experiences.

The 8 participants were of varying background and expertise: 4 computer science students (2 undergrads, 2

grads), 3 professional programmers and/or user interface designers, and 1 information visualization expert.

All were screened for familiarity with Java, the Swing UI toolkit, and the Eclipse integrated development

environment.

Participants were first given a brief tutorial, including a code walkthrough of some sample applications.

Subjects were then given a social network data file and asked to perform three programming tasks. The first

was to create a static (non-animated) visualization of the data set using a random layout. The second task

asked subjects to refine their visualization by applying a layout technique of their choice and using color to

convey information about one or more data attributes. Finally, subjects were asked to add interactivity and

animation, supporting a change of focus or other means of exploring the data. Tasks were performed on a

Windows PC pre-loaded with the Eclipse IDE and prefuse source code, examples, and API documentation.

Subjects were encouraged to “think-aloud” and were given up to an hour to complete the tasks. The tasks

were videotaped and subject’s code samples were saved for later analysis. The tasks were followed by a

short, open-ended interview in which subjects were asked about their experiences and their understanding

of various toolkit abstractions. Interviews typically lasted 15-20 minutes and were audio recorded.

Results

Every subject successfully built a working visualization, and 7 of the 8 subjects completed every task. All

subjects were able to load data from disk, construct working action lists, and subclass existing modules to

customize processing. Subjects did not necessarily complete tasks in the order presented (they were told

this was fine) and half encountered trouble at some point during development.

The most common difficulty for subjects was structuring data appropriately. For example, four subjects

wanted to apply a radial layout in their design, but ran into trouble when they used a general graph filter

and the radial layout algorithm, expecting the graph to have a tree imposed on it, threw an exception.

Confusion also surrounded the use of individual filtering modules. While the interviews revealed all

subjects grasped the general concept of filtering, one subject didn’t realize that, as implemented, they were

responsible not only for controlling what is visualized, but also constructing a separate topology of the

visual items. This was confounded by an earlier toolkit design that was overly confusing, in which

individual filters were used to process nodes and edges separately. This roadblock prevented the subject

from finishing all the tasks.

In response to these issues, we subsequently redesigned the filters provided by the toolkit. Instead of

separate modules for different data aspects (e.g., node filters, edge filters), we now provide unified filters

for filtering visual structures. Furthermore, we made the filters more robust to input data. For example, a

TreeFilter will now automatically overlay a tree structure on filtered items even when the source data is a

general graph, further taking advantage of the representational flexibility provided by the filtering

abstraction.

The study also proved useful for unearthing naming issues. Most notably, VisualItems had originally been

called GraphItems, an obvious (in hindsight) blunder that fueled confusion as to which data was abstract

and which was visual content. ActionLists were initially called ActionPipelines, but were renamed to avoid

association with the streaming nature of traditional pipeline architectures.

Participant reaction to the toolkit, even from those who had difficulty, was encouraging. Many appreciated

the toolkit design, saying “I’m surprised I needed as little code as I did!” and “[It’s] shockingly easy to

use.” Four of the subjects wanted to use prefuse in their own work, and have downloaded the toolkit. One

subject, who had been searching for tools to build visualizations of software execution, stated “This is the

first thing I have found that can do what I want.”

In addition to the findings directly related to prefuse, a couple of usage patterns emerged that are relevant

to the study of software toolkits in general. One result was the rather minimal usage of the provided API

documentation. Only one participant referred to documentation early on (exclaiming “I’m a javadoc fan!”);

all others worked on tasks for at least 30 minutes before opening the documentation. When asked about this

behavior in the post-study interview, subjects offered a number of explanations. Many said that they

preferred to work directly with the code and explore problems as they arose, resorting to documentation

only when a problem offers continued difficulty. One subject intimated that he preferred to stay within the

Eclipse environment, as he felt switching between different applications (the documentation is read in a

web browser) would slow him down.

Furthermore, all eight subjects at least initially used a “cut and paste” method of application building,

reusing existing sample code while performing tasks. Many subjects commented negatively on this as they

did it, saying it was “bad” or “embarrassing” (one subject even asked for permission!). When asked about

this, subjects were about evenly split in describing their reasons for this perceived “shame.” One camp

maintained that they had been taught (largely in school) that “blindly” copying code was bad software

engineering practice, for reasons too numerous to list here. Others felt that by copying and pasting they

were not learning the toolkit deeply enough, and thus somehow not participating fully in the study. (In fact,

the study tasks were purposefully designed such that cut and paste strategies still required integrating across

the various available code samples.) Despite this unease, all subjects disclosed in the post-task interviews

that this was their typical approach to learning unfamiliar APIs. All subjects expressed the belief that

sample code was the best way to learn new programming environments, suggesting that a toolkit’s “user

interface” is not just an API, but also associated materials (code samples, documentation), all of which

should be the subject of design.

Summary

Through the evaluation process, the toolkit has made great strides. Both the application building process

and user study have validated the goals of our toolkit while revealing needed functionality and suboptimal

design decisions. The filtering abstraction, while setting the learning curve for the system, was understood

by user study participants and has enabled an array of scalable visualizations. Using prefuse, study subjects

built useful visualizations in under an hour, and toolkit users expressed an appreciation of the

accompanying extensibility.

We have found that iterative design, a proven method for developing user interfaces, has also proven a

valuable design method for software toolkits. Since the study, an alpha release of prefuse has been

downloaded over 1000 times and is being used in research projects, course assignments, and commercial

products. We are following this usage in a longitudinal study of toolkit use, including a recent survey of 20

programmers. This has helped unearth additional user requirements, from bug fixes to the need for

improved documentation. Overall, reaction to prefuse has been overwhelmingly positive, enabling users to

create new visualizations of their own, many of whom report having only limited programming experience.

CONCLUSION

In this report we have introduced prefuse, a user interface toolkit for crafting interactive visualizations of

structured and unstructured data. prefuse supports the design of 2D visualizations of any data consisting of

discrete entities, such as graphs, trees, scatter plots, collections, and timelines. prefuse implements existing

theoretical models of information visualization to provide a flexible framework for simplifying application

design and enabling reuse and composition of visualization and interaction techniques. In particular,

prefuse contributes scalable abstractions for filtering abstract data into visual content and using lists of

composable actions to manipulate data in aggregate.

Applications built with the toolkit demonstrate the flexibility and performance of the prefuse architecture.

Both a user study and real-world usage has shown that programmers can use the toolkit to quickly build

and tailor their own interactive visualizations.

prefuse is part of a larger move to systematize information visualization research and bring more

interactivity into data analysis and exploration problems. In future work, we plan to introduce more

powerful operations for manipulating source data, provide additional processing, rendering, and interaction

components, and potentially develop a visual environment for application authoring. First and foremost,

however, both we and others are now using the toolkit to build and evaluate new interactive visualizations

for a variety of application domains.

prefuse is open-source software. The toolkit, source code, interactive demonstrations, and video

demonstrations are available at http://prefuse.sourceforge.net.

REFERENCES

1. Ahlberg, C. and B. Shneiderman. Visual Information Seeking: Tight Coupling of Dynamic Query
Filters with Starfield Displays. CHI’94. pp. 313-317, April 1994.

2. Barnes, J. and P. Hut, A Hierarchical O(N Log N) Force Calculation Algorithm. Nature, 1986. 324(4).

3. Batagelj, V. and A. Mrvar, Pajek: Analysis and Visualization of Large Networks, in Graph Drawing
Software, Springer. p. 77-103, 2003.

4. Battista, G.D., P. Eades, R. Tamassia, and I.G. Tollis, Graph Drawing: Algorithms for the Visualization
of Graphs. Upper Saddle River, NJ: Prentice Hall, 1999.

5. Baudel, Thomas. Canonical Representation of Data-Linear Visualization Algorithms and its
Applications. http://www2.ilog.com/preview/Discovery/technology/DiscoveryResearchPaper.pdf

6. Bederson, B.B. Fisheye Menus. UIST’00. pp. 217-225, 2000.

7. Bederson, B.B., J. Grosjean, and J. Meyer, Toolkit Design for Interactive Structured Graphics.
Technical Report HCIL-2003-01, CS-TR-4432 , UMIACS-TR-2003-03, University of Maryland 2003.

8. Bederson, B.B., J. Meyer, and L. Good. Jazz: An Extensible Zoomable User Interface Graphics Toolkit
in Java. UIST’00. pp. 171-180 2000.

9. Borner, K. et al. The XML Toolkit. Project Webpage. 2003. http://iv.slis.indiana..edu/sw/toolkit/.html

10. Bruls, M., K. Huizing, and J.J. van Wijk. Squarified TreeMaps. In Proceedings of Joint Eurographics
and IEEE TCVG Symp. on Visualization (TCVG 2000): IEEE Press. pp. 33-42, 2000.

11. Card, S.K., Information Visualization, in The Human-Computer Interaction Handbook. Lawrence
Erlbaum Associates, 2002.

12. Card, S.K., J.D. Mackinlay, and B. Shneiderman, Readings in Information Visualization: Using Vision
to Think. San Francisco, California: Morgan-Kaufmann, 1999.

13. Card, S.K. and D. Nation. Degree-of-Interest Trees: A Component of an Attention-Reactive User
Interface. Advanced Visual Interfaces. 2002.

14. Card, S.K., G.G. Robertson, and J.D. Mackinlay. The Information Visualizer, an Information
Workspace. CHI'91. pp. 181-188 1991.

15. Chi, E.H. A Taxonomy of Visualization Techniques Using the Data State Reference Model. InfoVis '00.
pp. 69-75 2000.

16. Chi, E.H. Expressiveness of the Data Flow and Data State Models in Visualization Systems. Advanced
Visual Interfaces. Trento, Italy, May 2002.

17. Fekete, J.-D. The InfoVis Toolkit. 10th IEEE Symposium on Information Visualization (InfoVis'04), pp.
167-174, 2004.

18. Furnas, G.W., The Fisheye View: A New Look at Structured Files, in Readings in Information
Visualization: Using Vision to Think, S.K. Card, et al, Editors. Morgan Kaufmann: San Francisco,
1981.

19. Graphviz. http://www.research.att.com/sw/tools/graphviz/

20. Grokking the Infoviz, Economist Technology Quarterly, June 2003.

21. Heer, J. Vizster: Visualizing Online Social Networks. April 2004.
http://www.cs.berkeley.edu/~jheer/infovis/final

22. Heer, J. and S.K. Card. DOITrees Revisited: Scalable, Space-Constrained Visualization of Hierarchical
Data. Advanced Visual Interfaces. Gallipoli, Italy, May 2004.

23. Henry, T.R. and S.E. Hudson. Interactive Graph Layout. UIST’91. pp. 55-64, November 1991.

24. Hudson, S. and J.T. Stasko. Animation Support in a User Interface Toolkit: Flexible, Robust, and
Reusable Abstractions. UIST’93. pp. 57-67, 1993.

25. Igarashi, T. and K. Hinckley. Speed-Dependent Automatic Zooming for Browsing Large Documents.
UIST’00. pp. 139-148, 2000.

26. Karrer, A. and W. Scacchi. Requirements for an Extensible Object-Oriented Tree/Graph Editor.
UIST’90. pp. 84-91, October 1990.

27. The Visualization Toolkit User's Guide: Kitware, Inc., 2003.

28. Klemmer, S.R., J. Li, J. Lin, and J.A. Landay. Papier-Mâché: Toolkit Support for Tangible Input.
CHI’04, Vienna, Austria 2004.

29. Krasner, G.E. and S.T. Pope, A Description of the Model-View-Controller User Interface Paradigm in
the Smalltalk-80 System. Journal of Object-Oriented Programming, 1988. 1(3): p. 26-49.

30. Lamping, J. and R. Rao, The Hyperbolic Browser: A Focus + Context Technique for Visualizing Large
Hierarchies. Journal of Visual Languages and Computing, 1996. 7(1): p. 33-55.

31. Lee, B., C.S. Parr, D. Campbell, and B. Bederson. How Users Interact with Biodiversity Information
Using Taxontree. Advanced Visual Interfaces. Gallipoli, Italy 2004.

32. Leung, Y.K. and M.D. Apperley, A Review and Taxonomy of Distortion-Oriented Presentation
Techniques. ACM Transactions on Computer-Human Interaction, 1994. 1(2): p. 126-160.

33. Mackinlay, J.D., S.K. Card, and G.G. Robertson, Rapid, Controlled Movement through a Virtual 3d
Workspace. Computer Graphics, 1990. 42(4): p. 1971-1976.

34. Mackinlay, J.D., G. Robertson, and S.K. Card. The Perspective Wall: Detail and Context Smoothly
Integrated. CHI91. pp. 173-179 1991.

35. Marshall, M.S., I. Herman, and G. Melancon, An Object-Oriented Design for Graph Visualization.
Software: Practice and Experience, 2001. 31(8): p. 739-756.

36. Myers, B.A., A New Model for Handling Input. ACM Transactions on Information Systems, 1990. 8(3):
p. 289-320.

37. Myers, B.A., S.E. Hudson, and R.F. Pausch, Past, Present, and Future of User Interface Software Tools.
ACM Transactions on Computer-Human Interaction, 2000. 7(1): p. 3-28.

38. Perlin, K. and D. Fox. Pad: An Alternative Approach to the Computer Interface. SIGGRAPH'93. pp. 57-
64, 1993.

39. Plaisant, C., J. Grosjean, and B. Bederson. Spacetree: Supporting Exploration in Large Node Link Tree,
Design Evolution and Empirical Evaluation. InfoVis’02. Boston, MA. pp. 57-64, October 2002.

40. Reingold, E.M. and J.S. Tilford, Tidier Drawings of Trees. IEEE Transactions of Software Engineering,
1981. SE-7: p. 21-28.

41. Robertson, G.G., M. Czerwinski, K. Larson, D.C. Robbins, D. Thiel, and M.v. Dantzich. Data
Mountain: Using Spatial Memory for Document Management. UIST’98. pp. 153-162 1998.

42. Robertson, G.G., J.D. Mackinlay, and S.K. Card. Cone Trees: Animated 3D Visualizations of
Hierarchical Information. CHI'91. pp. 189-194, 1991.

43. Sarkar, M. and M.H. Brown. Graphical Fisheye Views of Graphs. CHI’92. pp. 83-91, May 1992.

44. Treemaps for Space-Constrained Visualization of Hierarchies. 1998.
http://www.cs.umd.edu/hcil/treemap-history/

45. Stolte, C., D. Tang, and P. Hanrahan, Polaris: A System for Query, Analysis and Visualization of Multi-
Dimensional Relational Databases. IEEE Transactions on Visualization and Computer Graphics, 2002.
8(1).

46. Tufte, The Visual Display of Quantitative Information. Graphics Press, 1983.

47. Visual Thesaurus. http://www.visualthesaurus.com

48. Runge-Kutta Method, From MathWorld. http://mathworld.wolfram.com/Runge-KuttaMethod.html

49. Yee, K.-P., D. Fisher, R. Dhamija, and M.A. Hearst. Animated Exploration of Dynamic Graphs with
Radial Layout. InfoVis'01. pp. 43-50 2001.

Appendices

Appendices A-H: User Study Materials

A. Preliminary Study Questionnaire
B. Study Interview Guide
C. Participant Study Consent Form
D. Participant Media Release Consent Form
E. Committee for the Protection of Human Subjects Protocol
F. Social Network Data File Given To Subjects
G. prefuse Tutorial
H. User Study Task Booklet

Appendices I-L: Source Code for prefuse Applets

I. Source Code for a Zoomable, Force-directed Layout of a Graph
J. Source Code for a Large Graph Layout with Speed-Dependent Automatic Zooming
K. Source Code for an Animated Radial Layout of a Graph
L. Source Code for a Grid-based Layout of a Graph with Distortion

Appendix A participant number: ______ ______

prefuse Toolkit Study: Preliminary Questionnaire

1. Please describe your previous programming experience. Include number of years
programming, preferred programming languages, and any significant skills or projects you feel
are appropriate.

2. Please list your most commonly used development environments and/or tools (e.g., emacs, gcc,
javac, Eclipse, Visual C++, etc). In particular, please note your level of familiarity with the
Eclipse Java IDE.

3. Please describe your familiarity and experience with developing user interfaces. In particular,
please note your level of familiarity with the Java Swing user interface toolkit.

4. If not covered above, please describe your experience (if any) developing information
visualization or interactive graphics applications, and which graphics libraries you have used
(e.g., OpenGL, Java2D, VTK)

Appendix B

Interview Guide

• Walk me through how you went about designing and building your applications
o Experiences, Feelings
o Assumptions
o Reactions
o Successes
o Difficulties

• How comfortable did you feel using the components of the toolkit.

o Graph Entity / Graph Item filtering distinctions
o the Action / ActionPipeline abstraction
o Rendering system
o Focus management

• What similar tools (either in design or in purpose) have you used in the past? How
would you compare them?

o Primary abstractions
o Ease of development
o Expressive power
o Experience
o Professional opinion

Appendix C
UNIVERSITY OF CALIFORNIA, BERKELEY

DEPT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
COLLEGE OF ENGINEERING
UNIVERSITY OF CALIFORNIA, BERKELEY
BERKELEY, CALIFORNIA 94720

Consent Form for Study of “A Qualitative Evaluation of User Interface Toolkit for
Interactive Graph Visualization”

My name is Jeffrey Heer and I am a graduate student in the Department of Electrical Engineering and Computer
Science at the University of California at Berkeley. I would like to invite you to take part in a research study evaluating
a user interface toolkit for constructing interactive visualizations of graph-structured (node-link) data.

If you agree to take part in our research, you will be asked to take part in a user study lasting about 100 minutes. You
will first be asked to complete a form providing basic background information (e.g., programming experience). Next,
after receiving a brief orientation to system features and documentation, you will be asked to develop some basic
applications using the aforementioned user interface toolkit. This will be followed by an interview in which I will ask
you to elaborate upon your experiences and thoughts working with the toolkit. With your permission, portions of the
study will be either video or audio taped. We may ask to contact you by telephone, mail, or email if we have any
follow-up questions after the interview. If you agree to participate, you will receive $20 in cash to thank you for your
participation.

There are no known risks to you from taking part in this research, but a possible benefit may be incurred through
working with new technology. In addition, we will be using the findings of this study to further the design of new
frameworks for supporting the development of advanced user interfaces. This may prove to be of benefit to both
software developers and the human-computer interaction (HCI) research community.

All of the information that we obtain from you during the research will be kept anonymous. I will store the tape
recording and notes about it in locked files. Each person who participates will have their own code number so that no
one other than myself will know who you are in our notes. The key to the code of names will be kept in a separate
locked file. Your name and other identifying information about you will not be used in any reports of the research.
After this research is completed, we may save the tape recordings and our notes for use in future research by others or
ourselves. However, the same confidentiality guarantees given here will apply to future storage and use of the
materials. Although we will keep your name confidential, you may still be identifiable to others on the videotape.

Your participation in this research is voluntary. You are free to refuse to take part. You may refuse to answer any
questions and may stop taking part in the study at any time.

If you have any questions about the research, you may contact me by e-mail at jheer@cs.berkeley.edu. If you agree to
take part in the research, please sign the form below. Please keep the other copy of this agreement for your future
reference.

If you have any question regarding your treatment or rights as a participant in this research project, please contact the
University of California at Berkeley’s Committee for the Protection of Human Subjects at (510) 642-7461 or
subjects@uclink.berkeley.edu.

I have read this consent form and I agree to take part in this research.

_____________________________________ _________________

Signature Date

SANTA BARBARA • SANTA CRUZBERKELEY • DAVIS • IRVINE • LOS ANGELES • RIVERSIDE • SAN DIEGO • SAN FRANCISCO

Appendix D
UNIVERSITY OF CALIFORNIA, BERKELEY

DEPT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
COLLEGE OF ENGINEERING
UNIVERSITY OF CALIFORNIA, BERKELEY
BERKELEY, CALIFORNIA 94720

Photographic, Audio, and/or Video Records Release Consent Form

As part of this project we will make audio and video recordings of you while you participate in the research. We would
like you to indicate below what uses of these records you are willing to consent to. This is completely up to you. We
will only use the records in ways that you agree to. In any use of these records, your name will not be identified.

1. The records can be studied by the research team for use in the research project.

Audio __________ Video __________
 initials initials

2. The records can be shown to subjects in other experiments.

Audio __________ Video __________
 initials initials

3. The records can be used for scientific publications.

Audio __________ Video __________
 initials initials

4. The records can be shown at meetings of scientists interested in the study of user interfaces.

Audio __________ Video __________
 initials initials

5. The records can be shown in classrooms to students.

Audio __________ Video __________
 initials initials

6. The records can be shown in public presentations to nonscientific groups.

Audio __________ Video __________
 initials initials

7. The records can be used on television and radio.

Audio __________ Video __________
 initials initials

I have read the above description and give my consent for the use of the records as indicated above.

Name ___ Date _________________

Signature __

SANTA BARBARA • SANTA CRUZBERKELEY • DAVIS • IRVINE • LOS ANGELES • RIVERSIDE • SAN DIEGO • SAN FRANCISCO

Appendix E

 1

INVESTIGATOR:
Mr. Jeffrey Heer, Graduate Student
Computer Science Division
Department of Electrical Engineering and Computer Science
Soda Hall; MC: #1776

FACULTY ADVISOR:
Prof. Peter Lyman, Ph.D.
School of Information Management and Systems
South Hall; MC: #4600

1. TITLE: "Qualitative Evaluation of a User Interface Toolkit for Interactive Graph Visualization"

2. RELATED PROJECTS: none

3. NATURE AND PURPOSE: The proposed study is a qualitative evaluation of prefuse, a new user
interface toolkit designed to help developers create and implement highly interactive visualizations of
graph structured data (e.g., networks and hierarchies). User interface toolkits are collections of composable
software modules for building interactive applications. Not only are such toolkits the means through which
developers build user interfaces for end users, they can be viewed as a user interface in their own right – the
software APIs (application programming interfaces) of the toolkit form a user interface through which the
developer builds applications. This interface structures, supports, and constrains a developer’s
conceptualization and capabilities within the application building domain. The aim of the study is to use
qualitative methods, namely observation and interviewing, to gauge the efficacy, learnability, and usability
of the API “interface” of the prefuse toolkit. The study is intended to serve both summative and formative
purposes – to evaluate the current API, while searching for insights to support further design and revision.

4. SUBJECTS: Approximately 8-12 participants will be recruited. Recruited participants will be software
developers and user interface designers, with a preference towards people already familiar with the Java
Swing user interface toolkit and the Eclipse integrated development environment.

5. RECRUITMENT: Participants will be solicited via e-mail using well established general announcement
mailing lists. Interested parties can respond to the e-mail to indicate willingness to participate and schedule
a time for the study.

6. SCREENING PROCEDURES: The solicitation e-mail will state the desired demographic for the study
and its distribution will be targeted towards that demographic. Other than basic programming skills, no
additional screening will be performed.

7. PROCEDURES: The study is structured in three phases. In the first phase, participants will be told the
purpose of the study, provided consent forms, and, if consenting to participate, will then be given a short
questionnaire covering the participant’s programming background and expertise (see Appendix A). The
second phase will consist of a brief tutorial and orientation to the prefuse toolkit, followed by a video taped
user study in which the participant will be asked to use the toolkit to implement some basic applications or
programming tasks. The participant will be provided a computer, a development environment pre-loaded
with the prefuse toolkit, descriptions of the desired applications or programming tasks, and links to
documentation. Participants may ask any number of questions during the orientation phase, but will be
provided limited feedback once the development session is underway. This session will be limited to 1 hour
in length. In addition to being video taped, the participant will be observed by the person administering the
study. The second phase completes when the participant satisfactorily (in their own judgment) completes
the programming tasks, the participant decides to stop, or the allotted time has passed. Finally, the third
phase of the study will consist of an audio-recorded interview, approximately twenty minutes in length, in
which the participant will be asked to recount their experience using the toolkit, comment on various

Appendix E

 2

aspects of this experience, and compare the experience to those of using similar tools. Portions of the
recorded video may be reviewed during this third phase. The interview guide is included as Appendix B.

8. BENEFITS: Subjects will be given $20 for their participation. Additionally, participants may benefit
through hands-on exposure to new technologies they may find useful in their subsequent work. In addition,
we will be using the findings of this study to further the design of new frameworks for supporting the
development of advanced user interfaces. This may prove to be of benefit to both software developers in
general and the human-computer interaction (HCI) research community in particular.

9. RISKS: There are only minimal social risks to taking part in this study. Participants may be
embarrassed if the have difficulty completing the tasks given to them during the study. This risk is abated
however, by the clear stance that the purpose of the study is to test the software, not the skills of the human
programmer. Participants reserve the right to cancel the study at any time as well as revoke their consent at
any point during or after the study.

10. CONFIDENTIALITY: Confidentiality will be protected by procedures of secure management of
video tapes and notes. The potentially identifiable records will be kept in a locked file in the principal
investigators office. The list associating the subjects with code numbers will be locked in a separate
location. When compiling data, subjects will be referred to by code number.

11. INFORMED CONSENT: The consent procedure will take place at the beginning of the experiment.
The structure and content of the study will be disclosed up front, at which point participants will be asked
to sign a consent form (see Appendix C) and the standard CPHS Video Release Form. An extra copy of
each form will be given to the subject for their own records.

12. FINANCIAL ASPECTS: None.

13. WRITTEN MATERIALS:

See attached pages.

• Appendix A: Preliminary Questionnaire
• Appendix B: Interview Guide
• Appendix C: Participant Consent Form

...end of protocol (revised 04/07)

Appendix F

<!-- prefuse graph writer :: Sat Aug 09 15:08:49 PDT 2003 -->
<graph directed="0">
 <!-- nodes -->
 <node id="al-shehhi" label="Marwan Al-Shehhi">
 <att name="flight" value="United Airlines Flight 175 (WTC2)"/>
 <att name="pilot" value="true"/>
 </node>
 <node id="alshehri" label="Waleed M. Alshehri">
 <att name="flight" value="American Airlines Flight 11 (WTC1)"/>
 </node>
 <node id="halghamdi" label="Hamza Alghamdi">
 <att name="flight" value="United Airlines Flight 175 (WTC2)"/>
 </node>
 <node id="alsuqami" label="Satam M. A. Al Suqami">
 <att name="flight" value="American Airlines Flight 11 (WTC1)"/>
 </node>
 <node id="omar" label="Ramzi Omar" />
 <node id="abdullah" label="Rayed Mohammed Abdullah" />
 <node id="essabar" label="Zakariya Essabar" />
 <node id="moqed" label="Majed Moqed">
 <att name="flight" value="American Airlines Flight 77 (Pentagon)"/>
 </node>
 <node id="nalhazmi" label="Nawaf Alhazmi">
 <att name="flight" value="American Airlines Flight 77 (Pentagon)"/>
 </node>
 <node id="salim" label="Mamduh Mahmud Salim" />
 <node id="atta" label="Mohamed Atta">
 <att name="flight" value="American Airlines Flight 11 (WTC1)"/>
 <att name="pilot" value="true"/>
 </node>
 <node id="moussaoui" label="Habib Zacarias Moussaoui" />
 <node id="raissi" label="Lotfi Raissi" />
 <node id="bahaji" label="Said Bahaji" />
 <node id="al-marabh" label="Nabil al-Marabh" />
 <node id="salhazmi" label="Salem Alhazmi">
 <att name="flight" value="American Airlines Flight 77 (Pentagon)"/>
 </node>
 <node id="aalghamdi" label="Ahmed Alghamdi">
 <att name="flight" value="United Airlines Flight 175 (WTC2)"/>
 </node>
 <node id="abdi" label="Mohamed Abdi" />
 <node id="saiid" label="Shaykh Saiid" />
 <node id="alhaznawi" label="Ahmed Ibrahim A. Al Haznawi">
 <att name="flight" value="United Airlines Flight 93 (Pennsylvania)"/>
 </node>
 <node id="alomari" label="Abdulaziz Alomari">
 <att name="flight" value="American Airlines Flight 11 (WTC1)"/>
 </node>
 <node id="darkazanli" label="Mamoun Darkazanli" />
 <node id="alnami" label="Ahmed Alnami">
 <att name="flight" value="United Airlines Flight 93 (Pennsylvania)"/>
 </node>
 <node id="salghamdi" label="Saeed Alghamdi">
 <att name="flight" value="United Airlines Flight 93 (Pennsylvania)"/>
 </node>
 <node id="hijazi" label="Raed Hijazi" />
 <node id="malshehri" label="Mohand Alshehri">
 <att name="flight" value="United Airlines Flight 175 (WTC2)"/>
 </node>
 <node id="almihdhar" label="Khalid Almihdhar">
 <att name="flight" value="American Airlines Flight 77 (Pentagon)"/>
 </node>
 <node id="shaikh" label="Abdussattar Shaikh" />

Appendix F

 <node id="jarrah" label="Ziad Samir Jarrah">
 <att name="flight" value="United Airlines Flight 93 (Pennsylvania)"/>
 <att name="pilot" value="true"/>
 </node>
 <node id="walshehri" label="Wail M. Alshehri">
 <att name="flight" value="American Airlines Flight 11 (WTC1)"/>
 </node>
 <node id="banihammad" label="Fayez Rashid Ahmed Hassan Al Qadi Banihammad">
 <att name="flight" value="United Airlines Flight 175 (WTC2)"/>
 </node>
 <node id="alsalmi" label="Faisal Al Salmi" />
 <node id="al-ani" label="Ahmed Khalil Ibrahim Samir Al-Ani" />
 <node id="hanjour" label="Hani Hanjour">
 <att name="flight" value="American Airlines Flight 77 (Pentagon)"/>
 <att name="pilot" value="true"/>
 </node>

 <!-- edges -->
 <edge source="al-shehhi" target="halghamdi" weight="1"></edge>
 <edge source="al-shehhi" target="raissi" weight="2"></edge>
 <edge source="al-shehhi" target="essabar" weight="3"></edge>
 <edge source="al-shehhi" target="atta" weight="3"></edge>
 <edge source="al-shehhi" target="omar" weight="3"></edge>
 <edge source="al-shehhi" target="bahaji" weight="3"></edge>
 <edge source="al-shehhi" target="jarrah" weight="3"></edge>
 <edge source="al-shehhi" target="darkazanli" weight="2"></edge>
 <edge source="al-shehhi" target="saiid" weight="1"></edge>
 <edge source="al-shehhi" target="alshehri" weight="1"></edge>
 <edge source="al-shehhi" target="walshehri" weight="1"></edge>
 <edge source="al-shehhi" target="alsuqami" weight="1"></edge>
 <edge source="alshehri" target="saiid" weight="1"></edge>
 <edge source="alshehri" target="walshehri" weight="3"></edge>
 <edge source="alshehri" target="alomari" weight="1"></edge>
 <edge source="alshehri" target="alsuqami" weight="3"></edge>
 <edge source="alshehri" target="banihammad" weight="1"></edge>
 <edge source="halghamdi" target="nalhazmi" weight="2"></edge>
 <edge source="halghamdi" target="alnami" weight="3"></edge>
 <edge source="halghamdi" target="salghamdi" weight="2"></edge>
 <edge source="halghamdi" target="aalghamdi" weight="2"></edge>
 <edge source="halghamdi" target="alhaznawi" weight="3"></edge>
 <edge source="halghamdi" target="malshehri" weight="2"></edge>
 <edge source="alsuqami" target="hijazi" weight="2"></edge>
 <edge source="alsuqami" target="al-marabh" weight="2"></edge>
 <edge source="alsuqami" target="banihammad" weight="1"></edge>
 <edge source="alsuqami" target="walshehri" weight="3"></edge>
 <edge source="alsuqami" target="alomari" weight="1"></edge>
 <edge source="alsuqami" target="atta" weight="1"></edge>
 <edge source="omar" target="bahaji" weight="3"></edge>
 <edge source="omar" target="essabar" weight="3"></edge>
 <edge source="omar" target="atta" weight="3"></edge>
 <edge source="omar" target="jarrah" weight="3"></edge>
 <edge source="abdullah" target="alsalmi" weight="1"></edge>
 <edge source="abdullah" target="hanjour" weight="3"></edge>
 <edge source="abdullah" target="raissi" weight="2"></edge>
 <edge source="essabar" target="atta" weight="3"></edge>
 <edge source="essabar" target="bahaji" weight="3"></edge>
 <edge source="essabar" target="jarrah" weight="3"></edge>
 <edge source="moqed" target="almihdhar" weight="1"></edge>
 <edge source="moqed" target="nalhazmi" weight="1"></edge>
 <edge source="moqed" target="salhazmi" weight="1"></edge>
 <edge source="moqed" target="hanjour" weight="3"></edge>
 <edge source="nalhazmi" target="shaikh" weight="2"></edge>
 <edge source="nalhazmi" target="almihdhar" weight="3"></edge>

Appendix F

 <edge source="nalhazmi" target="abdi" weight="2"></edge>
 <edge source="nalhazmi" target="alnami" weight="3"></edge>
 <edge source="nalhazmi" target="salghamdi" weight="3"></edge>
 <edge source="nalhazmi" target="hanjour" weight="3"></edge>
 <edge source="nalhazmi" target="salhazmi" weight="3"></edge>
 <edge source="salim" target="darkazanli" weight="2"></edge>
 <edge source="atta" target="hanjour" weight="2"></edge>
 <edge source="atta" target="moussaoui" weight="1"></edge>
 <edge source="atta" target="raissi" weight="2"></edge>
 <edge source="atta" target="al-ani" weight="2"></edge>
 <edge source="atta" target="jarrah" weight="3"></edge>
 <edge source="atta" target="bahaji" weight="3"></edge>
 <edge source="atta" target="darkazanli" weight="2"></edge>
 <edge source="atta" target="saiid" weight="1"></edge>
 <edge source="atta" target="walshehri" weight="1"></edge>
 <edge source="atta" target="banihammad" weight="1"></edge>
 <edge source="raissi" target="hanjour" weight="2"></edge>
 <edge source="raissi" target="jarrah" weight="2"></edge>
 <edge source="bahaji" target="jarrah" weight="3"></edge>
 <edge source="al-marabh" target="aalghamdi" weight="2"></edge>
 <edge source="al-marabh" target="hijazi" weight="2"></edge>
 <edge source="al-marabh" target="salghamdi" weight="2"></edge>
 <edge source="salhazmi" target="almihdhar" weight="1"></edge>
 <edge source="salhazmi" target="hanjour" weight="2"></edge>
 <edge source="salhazmi" target="aalghamdi" weight="1"></edge>
 <edge source="salhazmi" target="alomari" weight="1"></edge>
 <edge source="salghamdi" target="alhaznawi" weight="3"></edge>
 <edge source="aalghamdi" target="hanjour" weight="1"></edge>
 <edge source="aalghamdi" target="alomari" weight="1"></edge>
 <edge source="alhaznawi" target="jarrah" weight="3"></edge>
 <edge source="alomari" target="banihammad" weight="1"></edge>
 <edge source="alomari" target="walshehri" weight="1"></edge>
 <edge source="alomari" target="hanjour" weight="1"></edge>
 <edge source="alnami" target="salghamdi" weight="3"></edge>
 <edge source="salghamdi" target="hijazi" weight="2"></edge>
 <edge source="malshehri" target="banihammad" weight="2"></edge>
 <edge source="almihdhar" target="shaikh" weight="3"></edge>
 <edge source="almihdhar" target="hanjour" weight="3"></edge>
 <edge source="walshehri" target="banihammad" weight="1"></edge>
 <edge source="alsalmi" target="hanjour" weight="1"></edge>
</graph>

prefuse
a graph visualization toolkit

jheer
Appendix G - prefuse tutorial

prefuse

• a user interface toolkit for interactive graph
visualization
– built in Java using Java2D graphics library
– graph data structures and algorithms
– pipeline architecture featuring reusable,

composable modules
– animation and rendering support
– architectural techniques for scalability

here is a graph…
At this point it is purely abstract (i.e.
assume we haven’t given it any visual
appearance yet)

The graph could be a…

• file system

• computer network

• web site

• biological taxonomy
• social network

Before we can visualize it, we first
need means to represent and
import this data.

abstract graph data

• Provided graph data structures:
– package edu.berkeley.guir.prefuse.graph
– Node, Edge, TreeNode, Graph, Tree
– Node and Edge are both instances of the Entity

interface, and can have any number of attributes.
• Loading and saving graph data:

– package edu.berkeley.guir.prefuse.graph.io
– GraphReader, GraphWriter interfaces
– XMLGraphReader, TabDelimitedTreeReader, and

other provided modules

filtering the graph

abstract data visual analogues

we now need to select which
parts of the graph to visualize…
this process is called filtering

(Node, Edge) (NodeItem, EdgeItem)

visual analogues

• Filtered graph data is mapped to GraphItems –
visual analogues of abstract data.
– NodeItem: analogue of nodes in the graph
– EdgeItem: analogue of edges in the graph
– AggregateItem: represents group of nodes and edges
– can be found in package edu.berkeley.guir.prefuse

• Together they form a mirror of the filtered subset
of the original data, and are the subject of all
subsequent processing (e.g. layout, rendering).

NodeItems EdgeItems AggregateItems

the item registry

NodeItems

EdgeItems
…

Comparator

• Manages creation of all
GraphItem instances. Give
the registry an Entity, and it
will return you a
corresponding GraphItem.

•A java.util.Comparator
instance is used to order
the rendering queues of
items, determining in what
order things are drawn.

• Supports management of
focus items (clicked nodes,
search results, etc)

ItemRegistry

getItem(Entity entity, boolean create)
getItems()
getDisplay(int)
getRendererFactory()
getFocusManager()

The ItemRegistry is the central data structure in prefuse. It manages the
mapping between GraphItems and the original graph data, and provides
queues for quickly iterating over filtered items. It also centralizes access to
other components, such as the RendererFactory and on-screen Displays.

• EdgeRenderer

• SubtreeAggregateRenderer

• ShapeRenderer

• TextRenderer

• TextImageRenderer

rendering

RendererFactory
getRenderer(GraphItem)

Renderer
render(Graphics2D, GraphItem)
getBounds(GraphItem)
locatePoint(Point2D, GraphItem)

Renderers are responsible for drawing items and computing bounding boxes. It
is the responsibility of the RendererFactory to return the desired Renderer for a
given GraphItem. These live in the package edu.berkeley.guir.prefuse.render.

Provided Renderers include:

display

Display

ControlListener
itemClicked(GraphItem, MouseEvent)
itemDragged(GraphItem, MouseEvent)
itemKeyPressed(GraphItem, KeyEvent)
…

The Display class provides on-screen drawing and
interaction with the visualized data set.

• subclasses javax.swing.JComponent
• renders GraphItems to the screen
• provides user interface callbacks

• through ControlListener interface
• through prefusex.controls package classes

• custom decoration with prePaint() and postPaint()
• custom tool-tip handling
• supports on-screen text editing
• graphics transforms, including pan and zoom

animation and activities

ActivityManager
schedule(Activity)
scheduleNow(Activity)
scheduleAt(Activity, long startTime)
scheduleAfter(Activity, Activity)

Activity
• long duration, stepTime, startTime
isScheduled()
cancel()
run(long elapsedTime)
addActivityListener(ActivityListener)

ActivityListener
activityScheduled(Activity)
activityStarted(Activity)
activityStepped(Activity)
activityFinished(Activity)
activityCancelled(Activity)

ActivityManager schedules and runs
Activities of specified duration (possibly
infinite), step rate, and start time.

Enables animation and time-based
processing.

Runs in a separate thread of execution,
and provides a protected environment
for running Actions.

edu.berkeley.guir.prefuse.activity

actions: graph processing

ActionPipeline extends Activity

Actions

Action
run(ItemRegistry, double f)
isEnabled()
setEnabled(boolean)

provided Actions include….
• Filters: GraphNodeFilter, FisheyeTreeFilter, TreeEdgeFilter, GraphEdgeFilter

• Layout: ForceDirectedLayout, RadialLayout, SquarifiedTreeMapLayout, …

• Assignment: ColorFunction, SizeFunction, FontFunction

• Interpolation: ColorInterpolator, LinearInterpolator, PolarInterpolator

Graph processing (filtering, layout, attribute assignment, etc) is achieved
by constructing a pipeline of processing modules called Actions. These
ActionPipelines are then submitted to the ActivityManager for execution.
Actions can be found in edu.berkeley.guir.prefuse.action

action pipeline examples
• Filter all graph nodes and edges

– ActionPipeline filter = new ActionPipeline(registry);
– filter.add(new GraphNodeFilter());
– filter.add(new GraphEdgeFilter());
– ActivityManager.scheduleNow(filter);

• Filter a “fisheye” view (of depth 2) of a tree and its edges
– ActionPipeline filter = new ActionPipeline(registry);
– filter.add(new FisheyeTreeFilter(-2));
– filter.add(new TreeEdgeFilter());
– ActivityManager.scheduleNow(filter);

• Perform a radial (circular) layout and assign node colors
– ActionPipeline layout = new ActionPipeline(registry);
– layout.add(new RadialGraphLayout());
– layout.add(new ColorFunction());
– ActivityManager.scheduleNow(layout);

• Perform a 1 second animation between configurations
– ActionPipeline animate = new ActionPipeline(registry, 1000, 20);
– layout.add(new LinearInterpolator());
– layout.add(new ColorInterpolator());
– animate.setPacingFunction(new SlowInSlowOutPacer());
– ActivityManager.scheduleNow(animate);

customizing actions

The Action interface is designed to let developers easily create custom Actions
to accomplish their goals. In addition, many actions are very easily customized to
a particular application. For example, the ColorFunction includes two methods
getColor(GraphItem item) and getFillColor(GraphItem item) that subclasses can
override to perform application specific code. The FontFunction and
SizeFunction actions are similar.

public class MyColorFunction extends ColorFunction {
public Paint getColor(GraphItem item) {

// custom code here, just return the desired color
}
public Paint getFillColor(GraphItem item) {

// custom code here, just return the desired color
}

}

writing applications
So how do you build an app with prefuse?
• before touching any code: design visual appearance,

layout, interactive behaviors
• determine input/output of graph data
• initialize ItemRegistry and Display(s)
• select (or implement custom) Renderers and
RendererFactory

• construct the various ActionPipelines necessary
• using existing library of Actions, or with custom-built

modules (or sub-components like Force functions)
• write user interface callbacks to orchestrate the desired
Activitys

other features include…
• complete physics force simulation engine

– including n-body (e.g. gravity/anti-gravity) solver, spring forces, drag forces, wall
forces, and multiple numerical integration options

– edu.berkeley.guir.prefusex.layout.ForceDirectedLayout,
edu.berkeley.guir.prefusex.force

• keyword search support using a prefix tree
– indexes nodes, allowing for very fast searches of selected attributes
– edu.berkeley.guir.prefuse.util.KeywordSearchFocusSet

• automatic image loading and caching
– including optional scaling to improve memory and computational costs.
– edu.berkeley.guir.prefuse.render.ImageFactory

• animation pacing functions (e.g., slow-in slow-out, there and back)
– edu.berkeley.guir.prefuse.activity.Pacer,

edu.berkeley.guir.prefuse.activity.SlowInSlowOutPacer
• graphical fisheye and bifocal distortion techniques

– can be used to navigate large spaces (similar in principle to MacOS X dock)
– edu.berkeley.guir.prefusex.distortion

• database connectivity (working, but still under construction)
– edu.berkeley.guir.prefuse.graph.external

prefuse user study

User Study Task Booklet

You will be given up to an hour to work on these
tasks, but you are free to stop at any time.

Please do not open the booklet until
instructed to do so.

jheer
Appendix H - user study task booklet

prefuse toolkit study
User Study Tasks

– These tasks will sequentially guide you in building an
interactive visualization using the prefuse graph
visualization toolkit.

– Please attempt to complete the tasks described in this
booklet in a normal, relaxed manner. There are no
right or wrong answers. We are evaluating the toolkit,
not anyone’s programming skills!

– Please think aloud as you build your application.
We’re interested in how you conceptualize different
aspects of the toolkit and the programming process in
general.

– You’re free to ask questions as they arise, but the
study administrator may refuse to answer questions
that might bias the results of the study.

Task 1

• You would like to visualize a social network of
terrorists involved in the September 11th attack.
The data is stored as “terror.xml” on your
system.

• Create a new application that displays a static
(i.e. non-animated) visualization of the data.
– Visualized graph nodes should display the name of

the corresponding person in the network.
– Don’t worry about layout yet, a random layout of

nodes is fine.

• You would now like to refine the design of
your visualization
– Select and then apply a layout technique for

spatially organizing the data.
– Use the color of nodes to convey meaningful

information. Possibilities include:
• Visualize which flight a terrorist was on
• Visualize the degree of connectedness

– hint: edu.berkeley.guir.prefuse.util.ColorMap may help

Task 2

Task 3

• You would now like to add interactivity to
your design
– Add animation (either continuous animation or

animated transitions between graph
configurations) to your design as appropriate

– Add interaction controls that allow you to
either change the focus of the visualization or
otherwise manipulate the presentation

Appendix I: Source Code for a Zoomable, Force-directed Layout of a Graph

package prefuse;

import java.awt.Color;
import java.awt.Paint;
import java.net.URL;

import javax.swing.JApplet;

import edu.berkeley.guir.prefuse.Display;
import edu.berkeley.guir.prefuse.EdgeItem;
import edu.berkeley.guir.prefuse.ItemRegistry;
import edu.berkeley.guir.prefuse.NodeItem;
import edu.berkeley.guir.prefuse.VisualItem;
import edu.berkeley.guir.prefuse.action.RepaintAction;
import edu.berkeley.guir.prefuse.action.assignment.ColorFunction;
import edu.berkeley.guir.prefuse.action.filter.GraphFilter;
import edu.berkeley.guir.prefuse.activity.ActionList;
import edu.berkeley.guir.prefuse.graph.Graph;
import edu.berkeley.guir.prefuse.graph.io.XMLGraphReader;
import edu.berkeley.guir.prefuse.render.DefaultEdgeRenderer;
import edu.berkeley.guir.prefuse.render.DefaultRendererFactory;
import edu.berkeley.guir.prefuse.render.TextItemRenderer;
import edu.berkeley.guir.prefusex.controls.DragControl;
import edu.berkeley.guir.prefusex.controls.NeighborHighlightControl;
import edu.berkeley.guir.prefusex.controls.PanControl;
import edu.berkeley.guir.prefusex.controls.ZoomControl;
import edu.berkeley.guir.prefusex.force.DragForce;
import edu.berkeley.guir.prefusex.force.ForceSimulator;
import edu.berkeley.guir.prefusex.force.NBodyForce;
import edu.berkeley.guir.prefusex.force.SpringForce;
import edu.berkeley.guir.prefusex.layout.ForceDirectedLayout;

/**
 * Application demo of a graph visualization using an interactive
 * force-based layout.
 *
 * @version 1.0
 * @author Jeffrey Heer prefuse(AT)jheer.org
 */
public class ForceApplet extends JApplet {

 private ActionList forces;

 /**
 * Initializes the applet.
 */
 public void init() {
 // get which text field to display on nodes
 String textField = this.getParameter("textField");
 // get the file containing the input data
 String inputFile = this.getParameter("file");

 // load the graph file
 // the applet expects the input data to be at a top-level
 // in the classpath
 Graph g = null;
 try {
 URL url = ForceApplet.class.getResource("/"+inputFile);
 g = (new XMLGraphReader()).loadGraph(url);
 } catch (Exception e) {
 e.printStackTrace();
 }

 // initialize an item registry to store visualized data
 ItemRegistry registry = new ItemRegistry(g);

 // create a display to visualize the contents of the registry
 Display display = new Display(registry);

 // set the size and initial center of the display
 display.setSize(500,500);

Appendix I: Source Code for a Zoomable, Force-directed Layout of a Graph

 display.pan(250,250);

 // initialize the renderers that draw onscreen items
 TextItemRenderer nodeRenderer = new TextItemRenderer();
 nodeRenderer.setRenderType(TextItemRenderer.RENDER_TYPE_FILL);
 nodeRenderer.setRoundedCorner(8,8);
 nodeRenderer.setTextAttributeName(textField);

 DefaultEdgeRenderer edgeRenderer = new DefaultEdgeRenderer();

 // associate the renderers with the ItemRegistry
 registry.setRendererFactory(new DefaultRendererFactory(
 nodeRenderer, edgeRenderer));

 // create a filter to map input data into visual items
 ActionList filter = new ActionList(registry);
 filter.add(new GraphFilter());

 // create a force simulator using anti-gravity (n-body force),
 // a spring force on edges, and a drag (friction) force
 ForceSimulator fsim = new ForceSimulator();
 fsim.addForce(new NBodyForce(-0.4f, -1f, 0.9f));
 fsim.addForce(new SpringForce(2E-5f, 75f));
 fsim.addForce(new DragForce(-0.01f));

 // create a list of actions that
 // (a) use the force simulator to continuously update the
 // position and speed of items,
 // (b) set item colors, and
 // (c) repaint the display.
 //
 // The -1 indicates that the list should continuously re-run
 // infinitely, while the 20 tells it to wait at least 20
 // milliseconds between runs.
 forces = new ActionList(registry,-1,20);
 forces.add(new ForceDirectedLayout(fsim, false, false));
 forces.add(new DemoColorFunction());
 forces.add(new RepaintAction());

 // add interactive controls to the display
 // disable automatic repainting by controls, instead let
 // the continuously running forces activity handle it
 display.addControlListener(new NeighborHighlightControl());
 display.addControlListener(new DragControl(false, true));
 display.addControlListener(new PanControl(false));
 display.addControlListener(new ZoomControl(false));

 // add the display to the applet
 getContentPane().add(display);

 // filter the input graph into visualized content
 filter.runNow();

 // now we'll wait until the start method is called by the applet
 // container before starting the force simulation
 } //

 /**
 * Starts the applet.
 */
 public void start() {
 // start force simulation, this will schedule the
 // force simulator to continuously run, as parameterized
 // in the init() method above
 forces.runNow();
 } //

 /**
 * Stops the applet.
 */
 public void stop() {

Appendix I: Source Code for a Zoomable, Force-directed Layout of a Graph

 // stop the force simulator for now.
 forces.cancel();
 } //

 /**
 * A custom color function for setting the color of on-screen items.
 */
 public class DemoColorFunction extends ColorFunction {
 private Color pastelRed = new Color(255,125,125);
 private Color pastelOrange = new Color(255,200,125);
 private Color lightGray = new Color(220,220,255);

 public Paint getColor(VisualItem item) {
 if (item instanceof EdgeItem) {
 if (item.isHighlighted())
 return pastelOrange;
 else
 return Color.LIGHT_GRAY;
 } else {
 return Color.BLACK;
 }
 } //

 public Paint getFillColor(VisualItem item) {
 if (item.isHighlighted())
 return pastelOrange;
 else if (item instanceof NodeItem) {
 if (item.isFixed())
 return pastelRed;
 else
 return lightGray;
 } else {
 return Color.BLACK;
 }
 } //

 } // end of inner class DemoColorFunction

} // end of class ForceApplet

Appendix J: Source Code for a Large Graph Layout with Speed-Dependent Automatic Zooming

package prefuse;

import java.awt.geom.Rectangle2D;
import java.util.Iterator;

import javax.swing.BorderFactory;
import javax.swing.JApplet;

import edu.berkeley.guir.prefuse.Display;
import edu.berkeley.guir.prefuse.ItemRegistry;
import edu.berkeley.guir.prefuse.NodeItem;
import edu.berkeley.guir.prefuse.action.RepaintAction;
import edu.berkeley.guir.prefuse.action.assignment.ColorFunction;
import edu.berkeley.guir.prefuse.action.assignment.Layout;
import edu.berkeley.guir.prefuse.action.filter.GraphFilter;
import edu.berkeley.guir.prefuse.activity.ActionList;
import edu.berkeley.guir.prefuse.event.FocusEvent;
import edu.berkeley.guir.prefuse.event.FocusListener;
import edu.berkeley.guir.prefuse.graph.Graph;
import edu.berkeley.guir.prefuse.graph.GraphLib;
import edu.berkeley.guir.prefuse.graph.Node;
import edu.berkeley.guir.prefuse.render.DefaultEdgeRenderer;
import edu.berkeley.guir.prefuse.render.DefaultRendererFactory;
import edu.berkeley.guir.prefuse.render.TextItemRenderer;
import edu.berkeley.guir.prefusex.controls.DragControl;
import edu.berkeley.guir.prefusex.controls.FocusControl;
import edu.berkeley.guir.prefusex.controls.NeighborHighlightControl;
import edu.berkeley.guir.prefusex.controls.ZoomingPanControl;

/**
 * Demonstration illustrating the use of a zooming pan control to
 * navigate a large space.
 *
 * @version 1.0
 * @author Jeffrey Heer prefuse(AT)jheer.org
 */
public class AutoZoomApplet extends JApplet {

 private ActionList update;

 /**
 * Initializes the applet.
 * @see java.applet.Applet#init()
 */
 public void init() {
 // get the size of the grid from the applet parameters
 int gridWidth = Integer.parseInt(getParameter("gridWidth"));
 int gridHeight = Integer.parseInt(getParameter("gridHeight"));

 // automatically generate some graph data
 Graph g = GraphLib.getGrid(gridWidth, gridHeight);

 // initialize an item registry to store visualized data
 ItemRegistry registry = new ItemRegistry(g);

 // initialize the renderers that draw onscreen items
 TextItemRenderer nodeRenderer = new TextItemRenderer();
 nodeRenderer.setRenderType(TextItemRenderer.RENDER_TYPE_FILL);

 registry.setRendererFactory(new DefaultRendererFactory(
 nodeRenderer,
 new DefaultEdgeRenderer(),
 null));

 // create a new action list to
 // (a) filter the graph data into visual items
 // (b) layout the items in a grid
 ActionList filter = new ActionList(registry);
 filter.add(new GraphFilter());
 // create and parameterize the grid layout
 GridLayout grid = new GridLayout();

Appendix J: Source Code for a Large Graph Layout with Speed-Dependent Automatic Zooming

 grid.setLayoutBounds(new Rectangle2D.Double(-1200,-1200,2400,2400));
 filter.add(grid);

 // create an action list to
 // (a) update item color values
 // (b) repaint the display
 update = new ActionList(registry);
 update.add(new ColorFunction());
 update.add(new RepaintAction());

 // create a display to visualize contents of the registry
 Display display = new Display(registry);
 display.setSize(600,600);
 display.setBorder(BorderFactory.createEmptyBorder(50,50,50,50));
 display.addControlListener(new DragControl());
 display.addControlListener(new NeighborHighlightControl());
 display.addControlListener(new FocusControl(0, update));
 display.addControlListener(new ZoomingPanControl());

 // add the display to the applet
 getContentPane().add(display);

 filter.runNow(); // run filter and layout
 } //

 /**
 * Starts the applet.
 * @see java.applet.Applet#start()
 */
 public void start() {
 update.runNow(); // assign colors and draw the visualization
 } //

 /**
 * A layout algorithm for placing nodes in a grid.
 */
 class GridLayout extends Layout {
 public void run(ItemRegistry registry, double frac) {
 // figure out the layout bounds
 Rectangle2D b = getLayoutBounds(registry);
 double bx = b.getMinX(), by = b.getMinY();
 double w = b.getWidth(), h = b.getHeight();
 int m, n;

 Graph g = (Graph)registry.getGraph();

 // first figure out the grid dimensions
 Iterator iter = g.getNodes(); iter.next();
 for (n=2; iter.hasNext(); n++) {
 Node nd = (Node)iter.next();
 if (nd.getEdgeCount() == 2)
 break;
 }
 m = g.getNodeCount() / n;

 // now place all the nodes
 iter = g.getNodes();
 for (int i=0; iter.hasNext(); i++) {
 Node nd = (Node)iter.next();
 NodeItem ni = registry.getNodeItem(nd);
 double x = bx + w*((i%n)/(double)(n-1));
 double y = by + h*((i/n)/(double)(m-1));

 // add some jitter, just for fun
 x += (Math.random()-0.5)*(w/n);
 y += (Math.random()-0.5)*(h/m);

 setLocation(ni,null,x,y);
 }
 } //

Appendix J: Source Code for a Large Graph Layout with Speed-Dependent Automatic Zooming

 } // end of inner class GridLayout

} // end of class AutoZoomApplet

Appendix K: Source Code for an Animated Radial Layout of a Graph

package prefuse;

import java.awt.Color;
import java.awt.Font;
import java.awt.FontMetrics;
import java.awt.Paint;
import java.net.URL;

import javax.swing.JApplet;

import edu.berkeley.guir.prefuse.AggregateItem;
import edu.berkeley.guir.prefuse.Display;
import edu.berkeley.guir.prefuse.EdgeItem;
import edu.berkeley.guir.prefuse.ItemRegistry;
import edu.berkeley.guir.prefuse.NodeItem;
import edu.berkeley.guir.prefuse.VisualItem;
import edu.berkeley.guir.prefuse.action.RepaintAction;
import edu.berkeley.guir.prefuse.action.animate.ColorAnimator;
import edu.berkeley.guir.prefuse.action.animate.PolarLocationAnimator;
import edu.berkeley.guir.prefuse.action.assignment.ColorFunction;
import edu.berkeley.guir.prefuse.action.filter.TreeFilter;
import edu.berkeley.guir.prefuse.activity.ActionList;
import edu.berkeley.guir.prefuse.activity.SlowInSlowOutPacer;
import edu.berkeley.guir.prefuse.event.FocusEvent;
import edu.berkeley.guir.prefuse.event.FocusListener;
import edu.berkeley.guir.prefuse.graph.Graph;
import edu.berkeley.guir.prefuse.graph.GraphLib;
import edu.berkeley.guir.prefuse.graph.Node;
import edu.berkeley.guir.prefuse.graph.Tree;
import edu.berkeley.guir.prefuse.graph.io.XMLGraphReader;
import edu.berkeley.guir.prefuse.render.DefaultEdgeRenderer;
import edu.berkeley.guir.prefuse.render.DefaultRendererFactory;
import edu.berkeley.guir.prefuse.render.Renderer;
import edu.berkeley.guir.prefuse.render.TextItemRenderer;
import edu.berkeley.guir.prefuse.util.ColorLib;
import edu.berkeley.guir.prefuse.util.StringAbbreviator;
import edu.berkeley.guir.prefusex.controls.DragControl;
import edu.berkeley.guir.prefusex.controls.FocusControl;
import edu.berkeley.guir.prefusex.controls.NeighborHighlightControl;
import edu.berkeley.guir.prefusex.controls.PanControl;
import edu.berkeley.guir.prefusex.controls.ZoomControl;
import edu.berkeley.guir.prefusex.layout.RadialTreeLayout;

/**
 * Demo application showcasing the use of an animated radial tree layout to
 * visualize a graph.
 *
 * @version 1.0
 * @author Jeffrey Heer prefuse(AT)jheer.org
 */
public class RadialApplet extends JApplet {

 private ActionList update, layout, animate;

 /**
 * Initializes the applet
 *
 * @see java.applet.Applet#init()
 */
 public void init() {
 // get which text field to display on nodes
 String textField = this.getParameter("textField");
 // get the file containing the input data
 String inputFile = this.getParameter("file");

 // load the graph file
 // the applet expects the input data to be at a top-level
 // in the classpath
 Graph g = null;
 try {
 URL url = RadialApplet.class.getResource("/" + inputFile);

Appendix K: Source Code for an Animated Radial Layout of a Graph

 g = (new XMLGraphReader()).loadGraph(url);
 } catch (Exception e) {
 e.printStackTrace();
 }

 // initialize an item registry to store visualized data
 final ItemRegistry registry = new ItemRegistry(g);

 // initialize the renderers that draw onscreen items
 // create a text renderer that abbreviates the text
 TextItemRenderer nodeRenderer = new TextItemRenderer();
 nodeRenderer.setTextAttributeName(textField);
 nodeRenderer.setMaxTextWidth(75);
 nodeRenderer.setAbbrevType(StringAbbreviator.NAME);
 nodeRenderer.setRoundedCorner(8, 8);

 // create an edge renderer that uses the data's "weight" attribute
 // to determine the line width of edges
 Renderer edgeRenderer = new DefaultEdgeRenderer() {
 protected int getLineWidth(VisualItem item) {
 String w = item.getAttribute("weight");
 if (w != null) {
 try {
 return Integer.parseInt(w);
 } catch (Exception e) {
 }
 }
 // if an exception occurs, return the default width value
 return m_width;
 } //
 };

 // associate the renderers with the ItemRegistry
 registry.setRendererFactory(
 new DefaultRendererFactory(nodeRenderer, edgeRenderer));

 // build an action list that
 // (a) filters graph data into visual items,
 // and imposes a tree structure on these items
 // (b) performs a radial layout of the visualized items
 // (c) assigns colors to items
 layout = new ActionList(registry);
 layout.add(new TreeFilter(true));
 layout.add(new RadialTreeLayout());
 layout.add(new DemoColorFunction(3));

 // build an action list to perform animation between configurations
 // (a) set the pacing so that "slow-in slow-out" animation is used
 // (i.e. things move slow at first, then speed up, then slow down)
 // (b) update item positions by interpolating in polar coordinates
 // (this makes items move in curves rather than lines)
 // (c) assign intermediate color values
 // (d) repaint the display(s)
 animate = new ActionList(registry,1500);
 animate.setPacingFunction(new SlowInSlowOutPacer());
 animate.add(new PolarLocationAnimator());
 animate.add(new ColorAnimator());
 animate.add(new RepaintAction());
 animate.alwaysRunAfter(layout);

 // build an action list that updates item colors
 // and then repaints the display(s)
 update = new ActionList(registry);
 update.add(new DemoColorFunction(3));
 update.add(new RepaintAction());

 // initialize a display that draws visualized items to the screen
 Display display = new Display(registry);
 display.setSize(600, 600);
 display.setBackground(Color.WHITE);

Appendix K: Source Code for an Animated Radial Layout of a Graph

 // add interactive controls
 display.addControlListener(new DragControl());
 display.addControlListener(new FocusControl(layout));
 display.addControlListener(new PanControl());
 display.addControlListener(new ZoomControl());
 display.addControlListener(new NeighborHighlightControl(update));

 // add the display to the applet
 getContentPane().add(display);
 } //

 /**
 * Starts the applet.
 *
 * @see java.applet.Applet#start()
 */
 public void start() {
 // filter, layout, assign colors, and animate
 layout.runNow();
 } //

 /**
 * A custom color function for setting the color of on-screen items.
 */
 public class DemoColorFunction extends ColorFunction {
 private Color graphEdgeColor = Color.LIGHT_GRAY;
 private Color highlightColor = new Color(50, 50, 255);
 private Color nodeColors[];
 private Color edgeColors[];

 public DemoColorFunction(int thresh) {
 nodeColors = new Color[thresh];
 edgeColors = new Color[thresh];
 for (int i = 0; i < thresh; i++) {
 double frac = i / ((double) thresh);
 nodeColors[i] = ColorLib.getIntermediateColor(Color.RED,
 Color.BLACK, frac);
 edgeColors[i] = ColorLib.getIntermediateColor(Color.RED,
 Color.BLACK, frac);
 }
 } //

 public Paint getFillColor(VisualItem item) {
 if (item instanceof NodeItem) {
 return Color.WHITE;
 } else if (item instanceof AggregateItem) {
 return Color.LIGHT_GRAY;
 } else if (item instanceof EdgeItem) {
 return getColor(item);
 } else {
 return Color.BLACK;
 }
 } //

 public Paint getColor(VisualItem item) {
 if (item.isHighlighted()) {
 return highlightColor;
 } else if (item instanceof NodeItem) {
 int d = ((NodeItem) item).getDepth();
 return nodeColors[Math.min(d, nodeColors.length - 1)];
 } else if (item instanceof EdgeItem) {
 EdgeItem e = (EdgeItem) item;
 if (e.isTreeEdge()) {
 int d, d1, d2;
 d1 = ((NodeItem) e.getFirstNode()).getDepth();
 d2 = ((NodeItem) e.getSecondNode()).getDepth();
 d = Math.max(d1, d2);
 return edgeColors[Math.min(d, edgeColors.length - 1)];
 } else {
 return graphEdgeColor;
 }

Appendix K: Source Code for an Animated Radial Layout of a Graph

 } else {
 return Color.BLACK;
 }
 } //
 } // end of inner class DemoColorFunction

} // end of classs RadialApplet

Appendix L: Source Code for a Grid-based Layout of a Graph with Distortion

package prefuse;

import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Font;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.geom.Rectangle2D;
import java.util.Iterator;

import javax.swing.BorderFactory;
import javax.swing.Box;
import javax.swing.ButtonGroup;
import javax.swing.JApplet;
import javax.swing.JCheckBox;
import javax.swing.JPanel;
import javax.swing.JRadioButton;

import edu.berkeley.guir.prefuse.Display;
import edu.berkeley.guir.prefuse.ItemRegistry;
import edu.berkeley.guir.prefuse.NodeItem;
import edu.berkeley.guir.prefuse.action.ActionMap;
import edu.berkeley.guir.prefuse.action.ActionSwitch;
import edu.berkeley.guir.prefuse.action.RepaintAction;
import edu.berkeley.guir.prefuse.action.assignment.Layout;
import edu.berkeley.guir.prefuse.action.filter.GraphFilter;
import edu.berkeley.guir.prefuse.activity.ActionList;
import edu.berkeley.guir.prefuse.activity.ActivityMap;
import edu.berkeley.guir.prefuse.graph.Graph;
import edu.berkeley.guir.prefuse.graph.GraphLib;
import edu.berkeley.guir.prefuse.graph.Node;
import edu.berkeley.guir.prefusex.controls.AnchorUpdateControl;
import edu.berkeley.guir.prefusex.controls.DragControl;
import edu.berkeley.guir.prefusex.distortion.BifocalDistortion;
import edu.berkeley.guir.prefusex.distortion.Distortion;
import edu.berkeley.guir.prefusex.distortion.FisheyeDistortion;

/**
 * Demonstration illustrating the use of distortion transformations on
 * a visualization.
 *
 * @version 1.0
 * @author Jeffrey Heer prefuse(AT)jheer.org
 */
public class DistortionApplet extends JApplet {

 /**
 * The activity map stores runnable activities (including ActionLists),
 * allowing you to run them later. Additionally, you change which
 * activity is mapped to by a given key, allowing dynamic change of
 * application behavior.
 */
 private ActivityMap activityMap = new ActivityMap();

 /**
 * The action map stores individual actions, allowing programs to
 * update their parameters later
 */
 private ActionMap actionMap = new ActionMap();

 private Display display;
 private AnchorUpdateControl auc;

 /**
 * Initializes the applet.
 * @see java.applet.Applet#init()
 */
 public void init() {

 // automatically generate some graph data
 Graph g = GraphLib.getGrid(15,15);

Appendix L: Source Code for a Grid-based Layout of a Graph with Distortion

 // initialize an item registry to store visualized data
 ItemRegistry registry = new ItemRegistry(g);

 // create a display to visualize contents of the registry
 display = new Display(registry);
 display.setSize(500,500);
 display.setBorder(BorderFactory.createEmptyBorder(50,50,50,50));
 display.addControlListener(new DragControl(false));

 // create an action list to
 // (a) filter the graph data into visual items
 // (b) layout the nodes into a grid
 // (c) paint the graph to the screen
 ActionList filter = new ActionList(registry);
 filter.add(new GraphFilter());
 filter.add(new GridLayout());
 filter.add(new RepaintAction());
 activityMap.put("filter",filter);

 // create an action list which uses a distortion function to
 // change the size and location of visual items
 ActionList distort = new ActionList(registry);
 Distortion[] acts = new Distortion[] {
 (Distortion)actionMap.put("distort1",new BifocalDistortion()),
 (Distortion)actionMap.put("distort2",new FisheyeDistortion())
 };
 distort.add(actionMap.put("switch",new ActionSwitch(acts, 0)));
 distort.add(new RepaintAction());
 activityMap.put("distortion",distort);

 // add the display and a panel with parameter controls to the applet
 getContentPane().add(display, BorderLayout.CENTER);
 getContentPane().add(new SwitchPanel(), BorderLayout.SOUTH);

 // create a control to update the anchor point
 // wait for the start method before adding it to the display
 auc = new AnchorUpdateControl(acts,distort);
 } //

 /**
 * Starts the applet.
 * @see java.applet.Applet#start()
 */
 public void start() {
 // run filter and layout
 activityMap.scheduleNow("filter");

 // enable distortion mouse-over, by adding a control that updates
 // the anchor point (e.g. focus) for a set of layout actions
 // (in this case the available distortion actions)
 display.addMouseListener(auc);
 display.addMouseMotionListener(auc);
 } //

 /**
 * A layout algorithm for placing nodes in a grid.
 */
 class GridLayout extends Layout {
 public void run(ItemRegistry registry, double frac) {
 // figure out the layout bounds
 Rectangle2D b = getLayoutBounds(registry);
 double bx = b.getMinX(), by = b.getMinY();
 double w = b.getWidth(), h = b.getHeight();
 int m, n;

 Graph g = (Graph)registry.getGraph();

 // first figure out the grid dimensions
 Iterator iter = g.getNodes(); iter.next();
 for (n=2; iter.hasNext(); n++) {

Appendix L: Source Code for a Grid-based Layout of a Graph with Distortion

 Node nd = (Node)iter.next();
 if (nd.getEdgeCount() == 2)
 break;
 }
 m = g.getNodeCount() / n;

 // now place all the nodes
 iter = g.getNodes();
 for (int i=0; iter.hasNext(); i++) {
 Node nd = (Node)iter.next();
 NodeItem ni = registry.getNodeItem(nd);
 double x = bx + w*((i%n)/(double)(n-1));
 double y = by + h*((i/n)/(double)(m-1));
 setLocation(ni,null,x,y);
 }
 } //
 } // end of inner class GridLayout

 /**
 * A panel that provides interactive controls for changing
 * different application settings
 */
 class SwitchPanel extends JPanel implements ActionListener {
 public static final String BIFOCAL = "Bifocal";
 public static final String FISHEYE = "Fisheye";
 public static final String SIZES = "Transform Sizes";
 public SwitchPanel() {
 setBackground(Color.WHITE);
 initUI();
 } //
 private void initUI() {
 JRadioButton bb = new JRadioButton(BIFOCAL);
 JRadioButton fb = new JRadioButton(FISHEYE);
 bb.setActionCommand(BIFOCAL);
 fb.setActionCommand(FISHEYE);
 bb.setSelected(true);

 JCheckBox cb = new JCheckBox(SIZES);
 cb.setActionCommand(SIZES);
 cb.setSelected(true);

 bb.setBackground(Color.WHITE);
 fb.setBackground(Color.WHITE);
 cb.setBackground(Color.WHITE);

 Font f = new Font("SanSerif",Font.PLAIN,24);
 bb.setFont(f);
 fb.setFont(f);
 cb.setFont(f);

 bb.addActionListener(this);
 fb.addActionListener(this);
 cb.addActionListener(this);

 ButtonGroup bg = new ButtonGroup();
 bg.add(bb); this.add(bb);
 this.add(Box.createHorizontalStrut(20));
 bg.add(fb); this.add(fb);
 this.add(Box.createHorizontalStrut(20));
 this.add(cb);
 } //
 public void actionPerformed(ActionEvent e) {
 String cmd = e.getActionCommand();
 if (BIFOCAL == cmd) {
 ((ActionSwitch)actionMap.get("switch")).setSwitchValue(0);
 activityMap.scheduleNow("distortion");
 } else if (FISHEYE == cmd) {
 ((ActionSwitch)actionMap.get("switch")).setSwitchValue(1);
 activityMap.scheduleNow("distortion");
 } else if (SIZES == cmd) {
 boolean s = ((JCheckBox)e.getSource()).isSelected();

Appendix L: Source Code for a Grid-based Layout of a Graph with Distortion

 ((Distortion)actionMap.get("distort1")).setSizeDistorted(s);
 ((Distortion)actionMap.get("distort2")).setSizeDistorted(s);
 activityMap.scheduleNow("distortion");
 }
 } //
 } // end of inner class SwitchPanel

} // end of class DistortionApplet

	ABSTRACT
	INTRODUCTION
	MOTIVATION AND RELATED WORK
	DESIGN OF THE PREFUSE TOOLKIT
	Abstract Data
	Filtering
	Managing Visual Items: The Item Registry
	Actions
	ActionLists and Activities
	Rendering and Display
	The prefuse Library

	WRITING APPLICATIONS WITH PREFUSE
	EVALUATION – APPLICATION COVERAGE
	Existing Visualizations
	Novel Visualizations
	Summary

	EVALUATION – QUALITATIVE USABILITY STUDY
	Results
	Summary

	CONCLUSION
	REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

